e Croerne e Dones ~ Bl
STRASOU

ATTRUSCIMICHTS W

UWS Library v3.0

Documentation

8 March 2011

Web-site: http://saada.u-strasbg.fr/uwstuto

W? UWSLibrary is free library: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License.

Author: Grégory Mantelet Institute: CDS (Strasbourg — France)
email: gregory.mantelet @astro.unistra.fr

http://saada.u-strasbg.fr/uwstuto
mailto:gregory.mantelet@astro.unistra.fr

CONTENTS

A. Brief reminder Of UWS . ..o eeeeetie et e e e eeeeeeiseieeeeeeeeeeeeeseeeeeeeeees 4
1. AN aSYNCHIONOUS SEIVICE. .oiiiiiiiiiiiiiiiii e e i et e et et e e e et e e e ettt eeeeeeeeeeeeeseeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 4
PN 0) o3 0) 8 (5111116 TS A (=TT 4
3. Resources and URIS.....oooeeeuueeeeiiiiiiieieieiiieee oo eeeeeeeeeeeeeeeeeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeees 5

L TSt JODS ettt ittt ittt e et ettt e et ettt et et et e ettt et eette ettt ettt et etee et ea et erteteeseetterrrrrrres 6
2. Create @ JOD..uuueii ittt ee et e e et e ettt sttt et et r ittt e tee et et teeeetteretttrer et e 6
3. Gt A JOD SUIMIMIAIY . eveiiiiii ittt e e e s et eeee ettt eeeeeeeeee ettt e eeeeeetee e eeeeeesseeeeeieereeeeeeeeeeeeeeeeesesereees 6
4. Change SOME JOD PATAIMIEIEIS. .. viiiiiiiiiiiee ettt ettt ettt et eeeeee e e et e et ettt eeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeess 7
S SEATT & JOD ittt ittt e ettt ettt et eet ettt tea e erettrer et e 7
0. ADOIT @ JOD . .oiiiiiiiiiiieeieee ettt e ettt ettt ettt e e eer e et ettt eteteetttrer ettt 7

1. ChooSIng the MtYPE Of W S L ittt ittt ettt eeteeeteteeeeeasesseeeereeesanaasseseeseaeenaseeeensserensseeenaserens 10
A DS AT WY S sttt t ittt ittt ettt ettt e et e et tee e ee et e ee e e e ee s e e eeee e ee e e e e ees e eeeeenaseerennsseenssens 10

Initializing the UWSoeiiiiiiiiiiiieiie ettt eeeeeee e s et et eeeetteeeeeseeeesiesrsreeeseeeeeeeeeeees 12
Forwarding requests t0 the UWSuveiiiiiiiiiiiiiieie e eeeiiieeeeeeeeeeeeeieeeeeeeeeeeeees 13
Customize YOUr UWS ... ettt ettt ee e e e e ee e e e e e iie e eeeeeeennees 13

3. DefiNiNg the JOD.. oo e e e e eeererranes 13
ADSIACIIOD . oottt ettt ettt e ettt et eeee et reeeeaaetaeeens 13
The CONMSIIUCTOT . teeiiiiiiiieittieeee et eeteeeeee ettt eeee ettt ettt eeteeit et eeeeeeeeeeeeeeeeeeeeeeeeetsseeeeeeeeeianisseeees 15
Managing JOD PaATAIMIEIETS. .. uuiiiieeesseeeieeeeeeieiitteeeeseeteeeeseeeeeesteeteessteeeesseeteeinssseeeeeeeeeeeseeeeererees 15
WIIINE the tASK. .ottt ettt et ettt es et eee et e teee e eeeeeeeeeenseseeeeees e eeeeess 16

(O (S 00 1Tl (S0 1) (o< TR 17
(©70) 10 183 (o) o W TN TN 18
D. How t0 CUStOMIZE & JOD 2..uuuriieiiiiiiiiiiiieiie ettt eeeet e e e e et eeeeieeeeeeeeeeeeensereeeeeeeeeeseneraees 19
L JOD Ittt ee ettt ettt ettt ettt te ettt rett et eetee ettt et rtteetteat e rrrerrrrrees 20
2. DAte fOIMNAL. . .uueeeeeeeseeee e eeerrrreeererrenes 20
3.a. Execution WITHOUT QUEUE.......ooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee et e e et e e e eeeeeeeeeeeeeeeeeeeeeeees 21
HOW d0eS it WOTK 2.iiiiiiiiiiieeeiii ettt et eeeeeaaeeeeeeeeeeeeesseeeeeeeeeeeeeaees 21

S OPPDINE JOD .ttt ettt ettt ettt ettt et e ettt e ettt tee e eeeeeeeeeereeeeeeees 21

UWS Library v3.0 - Page 2 on 55

HOW dOES T WOTK 7. ittt et ettt ittt e eeseeeeeteeee e eseeeeeseee e eseeesesaee e esseeeseteennnsaseseeeeeeensnnassseres 25

HOW tO CUStOMUIZE 2. ittt ettt ettt ettt et e ettt et e ettt ettt ettt teeteteeeeeeeeeseeeneeeeeees 26

R BT S WA Te] 5 (o)« ORI 27
HOW d0€S It WOTK 2.oiiiiiiiiiiiiiiiii it eeeeee et e et et eet ettt e e et eeseteeeeeeeeeeeiessrreeeeeeeeeeeess 27
AUtOMAIC AESIIUCHION. 1 .veiiiiiiiiieistteeeeee et e eeeetteeeee e e et eeeiitseeeeeeeeeeeineseeeeeeeteeteeissreesssesneeeeeeeeeess 27

HOW tO CUStOMUIZE 2. ittt e ettt e et et e e et e ettt et e e et eteeeeeteteeeeeee e eeeeeeeeens 27

6. Keeping an €VE ON JODS. it ee e et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereseeeeeeeeeenns 28

E. How t0 customize @ UWS 2. ittt et e e eeeeeeieeeeeeeeeeeittreeeeeeeess 29
1. Name, description and DOME PAgE.....c.uuveeiiiiiiiiiiiiiiiiiiieeieieeeieee e eeeeeiiieeeeeeeeeeeeeeeeeeeeeseeeeeeeeees 30
UWS 108 0UICE. ettt ettt e et e e et e et e et et e e e e eeeee e eeeeseesteeeeseesnnneeeeeees 30

JODS 1iStS TNANAZEIMICIIE. uvvveeeiieeiieieteeieeeeeeeeeeeteeeeeseeeeeeessteeeeeseetteeessseeeesseeeeeenssreeeeeseeeeeeeseerees 32
(000) 110 ¢0) I 1<) & TP 32
Information about @ UWS..... ..o eeee e eeeeeeeeens 34

3, USer IdentifiCAtION. . uvvveeise ittt ee et eeee ettt ee e e e e et eeeett e eee et eeeeetterbeeee ettt teaieeeeteeeeeeeeteeeerrrrrrrannes 34
HOW d0eS It WOTK .ottt eeeeeete e e eeeeeit et e e eeeeesetreeeeeeeeeeeeisrreeeeeeeeeeess 35

5 () (o X e 1 Y €0) 101 /- ST T 35

4. Request INteI DI tAtION. . uueeiieeieieeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeteeeeeeeesserseereeeeeeeeeeeteeeseseeeeseeeeseeeeeerennes 35
HoOW d0€S 1t WOTK ..vveeiiiiiiiiiiieieeieeeee ettt et eee e e et e et eeeeieeeeeeeeeeeeeeiaseeeeeees 35
HOW (0 CUSLOMIZE eiiiiiiiiiiiiieeieeeeeeeeeeeeee ettt eeeeeeeeeee e eeeeeeeeereeeeeeeeeeeiieieeeeeeeeeeeeenss 36

5. UWS URL INterDretatiOn. .. . iieseereeeisieeiieieeeeeeiseseeieisteeeeereseeeiensseeeeereeeeeeieisreeeesreeeeeeianeeteeeess 36
URL SPIINZ. ctieeieeiiieieeee ettt ettt eeee et eeeeeeeeeaeeeeeieeeeeeireeeeeeaeeeen 36
URL i@ D € At O . 1o eiiiiiiiiieeieieeesie e e e e e e e et ee s e s et e e e eeeeseee e et eeeeeeeeeeeee et eeeeeeeeeeeeeeeeeseeeeeeeereeteneeeeeeeenness 37
URL @eNeratioN. .. uuees e eeeeeeeenness 37

A, With MO ICAtION. . .uueeiiieiieiiitteee et e et eeeee et e e e et eeeiereeeseeeeeeeirereeeeeeeeeeeeieeeess 37

b. Without mMOdifiCaAtION. .uuuveeeiiiiiiiiieieeee ettt eeeeeeee e e e et eteneseree e eeeeeeeess 38

. A CHIONIS i iii it e et e e e e ettt e e et e e ettt ettt e ettt et ee et ettt et eete et eeetereeeeetterere e et er e ettt r e et t ettt e rr ettt e ererranes 39
The ClaSS UMW S A CUON, ...uueeeeeseseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeseeeeseeseeeeesseseesesneeeseeesnneeeseeeenns 39
HOW d0eS it WOTK Z.eiiiiiiiiiiieieeiiieeeeeeeeeeeee ettt ettt e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 40
HOW O CUSEOIMIZE 7.iiiieeireeeiiiieiieieeeeeeeeeeeeeeeeee et eeeeeeeee et eeeeeeeeieeeeeeeeeeeeeereeeeereesssseenennn, 41

1. EXtENd UWSACHON. 1 .eiiiiiiiieteiei st ee s s et eeeeee et eeeeeetensteeeseeeeeeeiisereeeeeeeeeeeeeeeess 41

2. Update YOUr UWS ..ot e et eeee e e e e eeeeeeeerereeeeeeeeeeeeeseeeeeeeees 44

HOW (0 CUSEOMIZE .eiiiiiiiiiiiiieeeee ettt e et eeeeee et e e et et eeieteeeeeeeeeeesieieeeeeeeeeeeeenss 46

J. SerIAliZAtIONS oo i iieieeeiieeeeeeee et e ettt ettt ettt ee ettt e ettt e et eeeeeeee e rreereeeeeeeeeeeeeeeeeeees 47
The classes UWSSerializer and SerializableUWSODbIeCt. . .uvvvviiiiiiiieiiiiiiiiieieiieeeeeeeeeiieiieeeeeeeens 47
HOW d0€S It WOTK .ottt e e e et iet et eeeeeeeeseeeeeeeeeeeeienstreeeeeeeeeeeess 48

5 () (O 11 Y €0) 101 /- ST 49

oI S 1N U 0 110 (U1 016 B 0 00 o T 50
HOW d0€S It WOTK 2.oiiiiiiiiiiiiiiiie i eeeeeeee e e eeeeee et e e eeeeeseereeeeeeeeeeeensreeeeeeeeeeeeess 50
HOW 0 CUSEOIMIZE 7..iiiieeerieiiie e ieeetteeeee e e ettt eeete et e e e et eeeieeeeeeeeeteeenetsseeeeeeeeeeeeessreseereessssesnennes 51

9. The interface HttpSessionBindingEVENT. . .oouvvvviiiiiiiiiieiieiiiis e eeeeeeieeeeeeeeeeeineeeeeees 53
F. UWS TOOIS-BOX. ...etttitetiitiittiteeeeeeeeteteeeeee ettt eeeeeeeeseseeeseeeeseeeesssesesssssessessssesesssesssesessneeesees 54
EXTOT C00IS. 1ttt ettt ettt ettt ettt ee et eeeeeeeeeeeeeeees 54
URL 100LS. 1 utteiiieiiiieeeeeeee oottt oottt e ettt eeeeeeeeeeeeeeeeeseeeeeeeeeeeaietaaeeeeeeeeeeeeeeeeeeeees 54
Saving & Restoring @ UWS . ..ottt e ettt eeieeeeeeeeeteeesieeereereeeeeeenneees 55

UWS Library v3.0 - Page 3 on 55

A. Brief reminder of UWS

1. An asynchronous service

The Universal Worker Service (UWS) pattern defines how to manage asynchronous

execution of jobs on a service.

In a synchronous service the client must wait a response for each sent request. Thus he can make only one
request at a time and if he disconnects from the service the request is abandoned.

UWS is an asynchronous service. That means the client has not to wait the response of one request before
making another one. So it is possible that a request is executing for hours or days even if the client
disconnects from the service. Indeed UWS is also (as most of asynchronous services) a state-full service that
is to say it stores the state of each received request and so for the client addresses.

2. A job-oriented service

UWS consists logically of a set of objects that may be read and written to in order to
control jobs. The objects are represented by elements within XML schema [...].

JobList

runiD [

Quote

ExecutionDuration

Result

_|ResultList

1

ParameterList

DestructionTime

0.

Parameter

A UWS is organized in one or more JobList objects. A JobList is a collection of Job. A job is described by:

+ an ID: a unique identifier of the job in its JobList
« a RunlD: a kind of label or name of the job given by its owner (it is not used to identify the job)

- an Execution Phase: the state of the job

- an Execution Duration: the maximum authorized duration of the job
- aDeletion Time: the time at which the job must be aborted and removed from its JobList

UWS Library v3.0 - A. Brief reminder of UWS

Page 4 on 55

a Quote: the estimated duration of the job
one or more results: all the results of the job execution

one or zero error: the error which has occurred during the job execution
zero or more additional parameters: parameters useful for the job execution

3. Resources and URIs

In a REST binding of UWS, each of the objects defined above is available as a web

resource with its own URI. These URIs must form a hierarchy [...]

Considering {jobs} as a name or an identifier of a JobList and (job-id) a JobID:

URI Description Value Writable
List of all jobs
/{jobs} contained in the NO
JobList {jobs}
. C Description/Summary
/1j0bs}/(job-id) of the Job (job-id) NO
/{jobs}/(job-id)/runid il‘j“m of the Job (job- |\ gine value YES
Execution Phase of the PENDING, QUEUED, EXECUTING,
/{jobs}/(job-id)/phase Job (job-id) COMPLETED, ERROR, ABORTED, |YES
J UNKNOWN, HELD or SUSPENDED
/{jobs }/(job-id)/owner l(_zljmer of the JOb (job-1o . defauit a String value) NO
. Integer number of seconds 20 ; a
/{jobs}/(job-id)/quote %l)mte of the Job (job- negative value means there is no quote [NO
! information
/{jobs}/(job- Execution Duration (in Integer number of seconds > 0 ; 0 means
. . . seconds) of the Job o i . YES
id)/executionduration (job-id) unlimited execution duration
/{jobs}/(job- Destruction Time of |A date with the format "yyyy-MM- YES
id)/destruction the Job (job-id) dd'T'HH:mm:ss.SSSZ" (ISO:8601)
Description/Summary
/{jobs}/(job-id)/error |of the error of the Job NO
(job-id)
. D Results list of the Job
/{jobs }/(job-id)/results (job-id) NO
. . List of the additional
i({ij)(/)[])j;r}a{r(xllzltje_rs parameters of the Job YES

(job-id)

All these web resources are formatted in XML according to the UWS Schema available in the Appendix B
of the IVOA Recommendation. Now almost all browsers are able to transform on the client side a XML
document into a HTML document by using a XSLT resource (Click here for a XSLT tutorial).

UWS Library v3.0 - A. Brief reminder of UWS

Page 5 on 55

http://www.w3schools.com/Xsl/

B. Using a UWS

In this part the usability of UWS will be described through an example: the UWS Timers. Its URL is
http://saada.u-strasbg.fr/uwstuto/basic. It manages only one JobList named timers. A HTML form to interact
with this UWS is available at http://saada.u-strasbg.fr/uwstuto/basic.html. With this form you can easily
manipulate the URL, the HTTP method and the parameters, so that you can experiment yourself the different
types of request.

So, now, let's see the basic operations of a UWS !

1. List jobs

To list all the jobs of a JobList you only have to select the web resource associated with the JobList. Here
you just have to type in your browser the URL:

http://saada.u-strasbg.fr/uwstuto/basic/timers

2. Create a job

To create a job you just need to send a HTTP-POST request to the JobList. No parameter is required, but
if you want you can give one of the following:

« RUNID

« EXECUTIONDURATION

- DESTRUCTION

- one or several additional parameters

« PHASE=RUN (to start the job just after its creation)

The JobID must be generated automatically so that it can identify only one job in the whole jobs list.

Once created the response to the request must be a redirection to the summary of the Job, that is to say: an
HTTP code 303 ("See other") and the URL http://saada.u-strasbg.fr/uwstuto/basic/timers/12345 (supposing
the created job has the ID 12345). If the parameter PHASE has been given with the value RUN, the Job must
start directly.

3. Get a job summary

As said previously UWS is a service based on REST. That means that any resource is available thanks to a
URI build in a hierarchical manner. To get a job summary, you need to know the URL of the UWS, the name
of the JobList and the ID of the job:

UWS_URL+"/"+JobList_name+"/"+Job_ID.
So you get the following URL: http://saada.u-strasbg.fr/uwstuto/basic/timers/12345.

Note 1: The other resources

All other objects which compose a Job object are available in the same way:
« http://saada.u-strasbg.fr/uwstuto/basic/timers/12345/runid
s http://saada.u-strasbg.fr/uwstuto/basic/timers/12345/phase
« http://saada.u-strasbg.fr/uwstuto/basic/timers/12345/executionduration

« http://saada.u-strasbg.fr/uwstuto/basic/timers/12345/destruction

UWS Library v3.0 - B. Using a UWS Page 6 on 55

file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/basic.html
file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/basic/

Note 2: The error summary case

An ErrorSummary object is represented with 3 main pieces of information:

« an error type (fatal or transient),

« amessage,

« and the attribute hasDetail - a boolean value which indicates if there are more details about the
error (for instance: a stack trace or an execution log).

The detailed message must be available at the URI /{jobs}/job-id)/error (in our example the
corresponding URL is http://saada.u-strasbg.fr/uwstuto/basic/timers/12345/error).

4. Change some job parameters

Some job parameters are writable. That means the client can change their value by sending a HTTP-
POST request to the URL of the job parameter to change. The request must have exactly one parameter
whose the key must be the name of the parameter to change. The response will always be a redirection to the
job summary.

For example: To change the parameter Execution Duration you must send a request to http://saada.u-
strasbg.fr/uwstuto/basic/timers/12345/executionduration with the parameter EXECUTIONDURATION=120
(for 120 seconds). The response will be a redirection to http://saada.u-strasbg.fr/uwstuto/basic/timers/12345.

Additional parameters must be updated in a different way. A HTTP-POST request must be sent to the URI
/{jobs}/(job-id)/parameters with one key-value pair which associates the name of the parameter and its value.
An alternative is to send a HTTP-PUT request with the same parameter but at the following URI /{jobs}/
(job-id)/parameters/{paramName).

Warning:

The value of a writable parameter can be changed ONLY IF the job has not been yet executed !

5. Start a job

Starting a job implies sending a HTTP-POST request to the job phase with the parameter PHASE=RUN.
In this case the execution phase of the Job goes from PENDING to QUEUED when the server starts to
execute the Job, and finally to EXECUTING when the execution finishes successfully.

6. Abort a job

Aborting a job implies sending a HTTP-POST request to the job phase with the parameter
PHASE=ABORT. In this case the execution must finished and the execution phase must be set to ABORT.

7. Destroy a job

There are two possible ways to remove a job from a jobs list:

+ by sending a HTTP-DELETE request to job resource
- by sending a HTTP-POST request with the parameter ACTION=DELETE to the job resource

When receiving one of these two request the Job execution must abort, all resources associated with the
Job (result file, error file, ...) must be deleted and finally the Job must be removed from its JobList. The
response to these requests is a redirection to the JobList: http://saada.u-strasbg.fr/uwstuto/basic/timers.

UWS Library v3.0 - B. Using a UWS Page 7 on 55

8. Important notes

+ When the execution is longer than the given Execution Duration, the job must be aborted. But all
previously generated results are retained.

» When the Destruction Time of a Job is reached, the job must be aborted - if running - and destroyed
(included all generated results and errors).

» The Execution Phase cannot be changed freely !

The Job is treated as a state machine with the Execution Phase naming the
state.

[...] A successful Job will normally progress through the PENDING, QUEUED,
EXECUTING, COMPLETED phases in that order. At any time before the
COMPLETED phase a job may either be ABORTED or may suffer an ERROR.

Pending

PHASE

Queued | PHASE=ABORT [UWS]

PHASE=ABOR

[uws)

Completed

UWS Library v3.0 - B. Using a UWS Page 8 on 55

C. Getting started

Introduction

This library is a convenient implementation of a UWS which already implements all behaviors and
functionalities described by the IVOA Recommendation. It is designed to be as quick and easy to use as
possible so that a developer of a UWS has not to worry with the UWS management.

Furthermore the representation of a UWS by the IVOA Recommendation remains the same in this library
(even if the name of the objects are slightly different): a UWS is a set of jobs lists which are sets of jobs.

AbstractUWS
Uws <Jl extends Joblist<J>
, J extends AbstractJob>
ot | 5 JobList
__1 <J extends AbstractJob>
Job AbstractJob

In practice all that change between two UWServices is the execution task of their Jobs. The service
management - included all possible requests it may receive - never changes. That's why this library already
manages all the behaviors of the IVOA Recommendation and why a job is represented by an abstract class
(AbstractJob).

So basically to make your own UWS with this library you will have to define the task of a job by extending
the class AbstractJob. Once done, you will write a Java servlet in which you will create a UWS (instance of
an AbstractUWS sub-class: one of the default or your own) and forward all HTTP requests to the built UWS.
And that's all !

Let's take an example ! In this part of the tutorial, we will build, step by step, a very simple UWS which
has to manage only one jobs list of timers. A timer is an object which executes an action when the given time
is elapsed. In our example, a timer will write a file with a basic message: "X seconds elapsed" (where X is
the given time).

More concretely, to make the described UWS we will follow the next three steps:

1. Choosing the "type of UWS"
2. Writing the servlet

3. Defining the job (its parameters. its results and its task)

UWS Library v3.0 - C. Getting started Page 9 on 55

file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/gettingStarted3.html
file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/gettingStarted2.html
file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/gettingStarted1.html

1. Choosing the '""type of UWS"

This UWS library provides five classes which are able to represent a UWS: AbstractUWS, BasicUWS,
ExtendedUWS, QueuedBasicUWS and QueuedExtendedUWS. The first one is an abstract class whereas the
four others are its sub-classes. Depending of your needs you are going to use one class rather than another
one, hence this first step: Choosing the "type of UWS". So that helping you to make your choice, lets
introduce these classes...

AbstractUWS

The main goal of a UWS is to manage a set of jobs lists in addition to all jobs resources. AbstractUWS
already defines all methods required to easily manage its jobs lists. Particularly you can add new jobs list
thanks to the method: addJobList(JL). Besides, it may also manage an execution queue. That implies that
some jobs may be put in a QUEUED state until enough resources has been freed. Obviously all default
behaviors of a UWS described by the IVOA Recommendation are already fully implemented.

The only abstract method of AbstractUWS is createJob(Map<String, String> params). It lets creating a
new job with the given parameters each time a such request is sent to the UWS. This function is abstract
because the type of job to create is not predictable in a generic way. For that, a concrete service is needed !
That means you would have to make an extension of AbstractUWS for each service.

However in spite of extending AbstractUWS at each time, you can use one of its default sub-classes:
BasicUWS, ExtendedUWS, QueuedBasicUWS or QueuedExtendedUWS. Below a simplified class diagram
of all theses classes:

Class
AbstractClass
. AbstractUWs < JI extends JobList<]>, | extends Abstractjob>
= -> implements
+ -= public
- -= private
> protected +Ab5tractUWSl{]l __
F+ addlobList{JL): boolean
ﬁfgﬂg{“em"d F+ getjobList{String): JL
F+ getMbjobList(): int
F+ remove)oblist(JL): boolean
F+ destroyjobList(JL}: boolean
F+ removeAllobLists()
F+ destroyAlloblists()
<F+ iterator(): lterator<JL>
+ crearefob(Map <5tring, 5tring> params). |
+ executeRequest{HttpSenvletRequest, HttpServietResponsel: boolean
BasicUWS<] extends Abstractjob= ExtendedUWS
+ BasicUWS(Class=<] jobClass) + ExtendedUws()
<=+ createjob{Map=5tring, String=):] =+ createJob(Map=5tring, String=): Abstractjob
QueuedBasicUWS<] extends Abstractjob> QueuedExtendedUWS
+ QueuedBasicUWS(Class<]= jobClass, int nbMaxRunning/obs) + QueuedExtendedUWS(int nbMaxRunningjobs)
F+ getMaxRunninglobs(): int F+ getMaxRunninglobs(): int
F+ setMaxRunninglobs(int) F+ setMaxRunninglobs(int)

UWS Library v3.0 - C. Getting started Page 10 on 55

BasicUWS and ExtendedUWS

BasicUWS and ExtendedUWS propose a simplified definition of a UWS. So you will never need to extend
AbstractUWS ! Indeed both have been designed so that each jobs list can manage ONLY ONE GIVEN kind
of job. Their only difference lies in the fact that in BasicUWS ALL managed jobs lists MUST be of ONLY
one given type of job, whereas ExtendedUWS allows that each jobs list may be of a different type of job.

Let's take some examples:
« To make a UWS which manage ONE jobs lists of JobA, you may use BasicUWS:
BasicUWS<JobA> uws = new BasicUWS<JobA>(baseUWSUrl, JobA.class);
uws .addJobList(new JobList(jlUrl A));

« But to make a UWS which manages TWO (at least) jobs lists, the first of JobA and the second of
JobB, you may use ExtendedUWS:

ExtendedUWS uws = new ExtendedUWS (baseUWSUrl);
uws .addJobList(new JobList(jlUrl A), JobA.class);
uws .addJobList(new JobList(jlUrl B), JobB.class);

IMPORTANT

These both classes use the Java Reflection in their method createJob to create the jobs of the good
type. Hence: JobA.class and JobB.class. Thus they expect to find the constructor of AbstractJob with
only one parameter (of type Map): see AbstractJob(Map<String, String>). So the used job types must
have at least this constructor to be correctly managed with BasicUWS, ExtendedUWS and their sub-
classes !

QueuedBasicUWS and QueuedExtendedUWS

QueuedBasicUWS and QueuedExtendedUWS extend respectively BasicUWS and ExtendedUWS. They
just have one additional functionnality: they can manage an execution queue. A job is going to run only if
there are less running jobs than a given number. Otherwise the job is put in a queue until a running job ends.
The maximum number of running jobs may be initialized at the creation of the UWS and may be changed
afterwards with setMaxRunningJobs(int).

The execution queue management can be customized quite easily for any sub-class of AbstractUWS. For
more information see C.3.b. Execution WITH queue.

IMPORTANT

As for BasicUWS and ExtendedUWS, the used job types must have at least the constructor of
AbstractJob with only parameter of type Map<String,String> !

Which one choosing ?

As said previously to make a UWS you always need an instance of an AbstractUWS sub-class. You have
two solutions: either you extend AbstractUWS or you use directly one of its sub-classes. To help you
determining which solution is the best you can ask yourself the two following questions:

1. «May my UWS have to manage different kinds of job ?»
+ YES: ExtendedUWS or QueuedExtendedUWS
« NO: BasicUWS or QueuedBasicUWS

2. «Need I an execution queue ?»
* YES: QueuedBasicUWS or QueuedExtendedUWS
« NO: BasicUWS or ExtendedUWS

UWS Library v3.0 - C. Getting started Page 11 on 55

In our example, we will use only one kind of job and we do not require an execution queue (because a
timer does not take much resources). So we will use BasicUWS !

2. Writing the servlet

A UWService is a Web-Service. Since this library is developed in Java, a UWService will be implemented
by a HttpServlet. This part of the tutorial explains how to write a Servlet using this library to create and to
manage a UWService.

To execute a servlet, Tomcat must be installed on your server. This UWS library has been tested with the
versions 6 and 7 of Apache/Tomcat.

The HttpServlet class

It lets defining a dynamic web-resource for the protocol HTTP. Since this class is abstract, you must
override it. There is already one constructor with no parameter. In the most cases it is not needed to override
it or even to add more constructor.

It has several methods but only three of them will interest us:

« init() or init(ServietConfig) : called only at the first use of the servlet

« destroy() : called at the end of a Tomcat session, particularly when Tomcat stops or restarts

« service(HttpServietRequest., HttpServletResponse) : called at each request on the servlet. It is used as
a hub towards the following methods, in function of the used HTTP method: doGet (HTTP-GET) ,
doPost (HTTP-POST) , doPut (HTTP-PUT) , doDelete (HTTP-DELETE), ...

Warning

The same HttpServlet is used for all clients. It means that all class attributes will have the same value for
all clients. So beware of the way you use them !

UWSTimers

UWSTimers is the name of the servlet we want to create in this tutorial. It will have only one attribute
whose the type has been choosen in the previous part: BasicUWS<JobChrono> uws. Now all we have to do
is to initialize this variable and to forward it all requests the servlet receives.

JobChrono is the type of the job our UWS must manage. It will be defined in the next part of this tutorial.

Initializing the UWS

The initialization of a UWS must be done at the first request sent to the servlet. So our UWS will be
initialized in the init(ServletConfig) method of the servlet UWSTimers:

@Override
public void init(ServletConfig config) throws ServletException {
super.init(config);
try{
// Create the UWS [required]:
uws = new BasicUWS<JobChrono>(JobChrono.class);

// Set a description [optional]:
uws.setDescription("This UWS aims to manage one (or more) JobList(s) of
JobChrono." +
"JobChrono is a kind of Job whose the execution task consists to wait a
given time" +
"before executing an action.");

UWS Library v3.0 - C. Getting started Page 12 on 55

http://download.oracle.com/javaee/6/api/javax/servlet/GenericServlet.html#init(javax.servlet.ServletConfig)
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html#doDelete(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html#doPut(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html#doPost(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html#doGet(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html#service(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
http://download.oracle.com/javaee/6/api/javax/servlet/GenericServlet.html#destroy()
http://download.oracle.com/javaee/6/api/javax/servlet/GenericServlet.html#init(javax.servlet.ServletConfig)
http://download.oracle.com/javaee/6/api/javax/servlet/GenericServlet.html#init()
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html
http://tomcat.apache.org/

// Create the job list "timers" [required]:

uws .addJobList(new JobList<JobChrono>("timers"));
}catch(UWSException ex){

throw new ServletException(ex);
1

Forwarding requests to the UWS

Forwarding request to the UWS is actually easier than meets the eye ! AbstractUWS has been designed
to be able to interpret HTTP servlet requests and to answer them in consequence. So to do that, you have only
to call the method AbstractUWS.executeRequest(HttpServletRequest, HttpServletResponse). This method
can interpret any kind of request, whatever is the HTTP method (GET, POST, PUT or DELETE). If a request
is invalid - according to the IVOA Recommendation - this method throws an exception which specifies the
HTTP error code in addition to a message.

Here is the service(HttpServiletRequest, HttpServletResponse) method of UWSTimers in which requests
are forwarding to our UWS:

@Override
protected void service(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
try{
// Forward the request to the uws [required]:
uws .executeRequest(req, resp);
}catch(UWSException uwsEx){
// Display properly the caught UWSException:
resp.sendError(uwsEx.getHttpErrorCode(), uwsEx.getMessage());

Customize your UWS

By using this UWS library, the minimal code of a servlet implementing a UWService is only limited to the
above code (except for the uws description which can be omitted). But so that making more controls while
using the UWS, the full source code of UWSTimers is a little longer than the explained one. For instance the
execution duration and the destruction time have a maximum and a default value. Besides each user of this
UWS is identified so that they can manage only their own jobs.

All customizations of your UWS should be done at its initialization, in the init(ServletConfig) method.
Besides the part E. How to customize a UWS ? lists and explains the most usefull UWS customizations.
However to help you writing quickly your servlet you can download the following template. It contains the
above minimal code and some UWS customizations.

3. Defining the job

Now we have our servlet and our UWS all that's missing is the job ! With this library a job is an instance
of an AbstractJob sub-class. So the job our UWS must manage - named previously "JobChrono" - must be an
extension of AbstractJob. In this last part of the tutorial you will see how to define a UWS job through the
example of JobChrono.

AbstractJob

The IVOA Recommendation describes the main attributes of a job as well as its behaviors. All this
description has been preserved in AbstractJob.

UWS Library v3.0 - C. Getting started Page 13 on 55

http://download.oracle.com/javaee/6/api/javax/servlet/GenericServlet.html#init(javax.servlet.ServletConfig)
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServlet.html#service(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)

As said in the introduction, the task of a job is the only thing that really change between two UWS. It is for
this reason that this library defines a job in an abstract class. The function jobWork(), which lets defining the
task of a job, is the only abstract method.

Here is a simplified class diagram of AbstractJob:

AbstractClass
+ = public
- -= private Abstractjob
-> protected F# jobid: String 16}

) F# owner: String = ANONYMOUS_OWNER {G}
F -> final # runiD: String = nul {G,5}
{G,5} -= G for Getter & S for Setter # phase: JobPhase {G,5}

- quote: long = QUOTE_NOT KNOWN {G,5}

AbstractMethod - startTime: Date = null {G}
F -=>final - endTime: Date = null {G}

- executionDuration: long = UNLIMITED _DURATION {G,5}
- destructionTime: Date = null {G,5}

errorSummary: ErrorSummary = null {G,5}

additionalParameters: Map=5tring, String= = {}
results: List<Result= = {}

L]

+ Abstractjob{Map=<5tring, String= params)

F+ start()

+ start{boolean useManager)

+ abort()

+ error(ErrorSummary

+ error(UWSException)

stop()

+ clearResources()

F+ isRunning(): boolean

F+ isFinished(): boolean

|loadAdditionalParams(): boclean

F+ getAdditionalParameters(): Set<String=

F+ getAdditionalParamatervalue(String paramMame): String

F+ addOrUpdateParameter(String paramhame, String paramValue): boolean
+ addOrUpdateParameters(Map=<5String,String= params): boolean

F+ removeldditionalParameter(String paramName): boolean

F+ removeAllAdditionalParameter()

+ addResult(Result): boolean

o]

UWS Library v3.0 - C. Getting started Page 14 on 55

Now let's see how to extend AbstractJob !

The constructor

AbstractJob has four constructors. Three of them require a map of parameters (default and/or additional).
If the job has to be used by BasicUWS, ExtendedUWS or one of their sub-class you must ensure that the
constructor with only the map of parameters exists. Indeed these classes use the Java Reflection to create
jobs. They expect to wuse the constructor with only one parameter of type Map:
AbstractJob(Map<String,String>).

The last constructor is discouraged because it lets initializing manually all the fields of the new job. No
processing or check is done on the attributes. Consequently it can produce errors or "paradoxes” like a job
with a phase COMPLETED but with an error summary, or worse a job whose the job ID is already used by
another job (in this case the job can not be added in its job list).

In the most cases, the constructor with only one parameter of type Map (AbstractJob(Map)) is
clearly enough !

public JobChrono(Map<String, String> lstParam) throws UWSException {
super(lstParam);
}

Managing job parameters

Any timer has to wait a given time. This time must be set at least at the job initialization and may be
updated before the job execution. As it is not a default attribute of a UWS job, it is considered as an
additional parameter and so it is stored in the attribute additionalParameters. With AbstractJob you can check
or process these parameters by overriding loadAdditionalParams(). This function does nothing by default and
is called by addOrUpdateParameters(Map<String,String>) when one or more job parameters (additionnal or
not) has to be added or updated.

addOrUpdateParameters(Map<String,String>) always does the following actions:

1. Call loadDefaultParams(Map<String,String>) which loads all job attributes described by the IVOA
Recommendation. All the corresponding items are removed from the given map.

2. Add/Update all remaining items to the job attribute additionalParameters
3. Call loadAdditionalParams()

This function is also called to initialize the job attributes in the main constructor of AbstractJob:
AbstractJob(Map<String,String>).

So if you want to manage yourself some additional job attributes, you must extend
loadAdditionalParams(), extract the items that interest you and do what you want with them. That is exactly
what we are going to do to initialize (or update) the "time to wait" of JobChrono:

protected int time = 0;

protected boolean loadAdditionalParams() throws UWSException {
// JobChrono needs only one parameter for its execution: the time:
if (additionalParameters.containsKey("time")){
try{
time = Integer.parselnt(additionalParameters.get("time"));
if (time < 0)

time = 0;
// If you want you can remove this parameter from the map
additionalParameters:

UWS Library v3.0 - C. Getting started Page 15 on 55

// additionalParameters.remove("time");
}catch(NumberFormatException nfe){
throw new UWSException(UWSException.BAD REQUEST, "The given TIME value
(\""+additionalParameters.get("time")+"\") is incorrect: it must be a positive integer
value !");

}
}

return true;

}
Notes:

* Rather than creating a class attribute for the "time to wait" and extracting its value from the map
additionalParameters, you can merely leave the corresponding item in the map and get its value
when needed.

» In loadAdditionalParams() you have a full access to the map additionalParameters, and so you are
able to remove an item if it is not correct or if you have already used its value. Besides you can also
add or update some items if needed.

Writing the task

Writing the task means overriding the abstract method jobWork(). This method will be then called in a
separated thread during the job execution. The whole thread execution and the phase transitions are already
managed by this library. However you should beware to the following points when defining a job task:

» You should not have to change the job phase !

» You should check as often as possible whether the thread has been interrupted (which would mean
the user has aborted the job). In this case you must throw an InterruptedException so that the job
execution can be stopped with the status ABORTED:

if (thread.isInterrupted())
throw new InterruptedException();

« Any error (exception or not) must be thrown in an UWSException, so that the job execution can be
stopped with the status ERROR. The error message is fetched directly from the exception.

« Writing the results is your responsibility ! It MUST be done in this method.

Now let's see what looks like the implementation of this method for JobChrono ! I remind you that the task
of JobChrono is to wait a given time before writing a file with the following content: X seconds are elapsed.

protected synchronized void jobWork() throws UWSException, InterruptedException {
int count = 0;

// 1. EXECUTION TASK = to wait {time} seconds:
while(!thread.isInterrupted() && count < time){
Thread.sleep(1000);
count++;

}

// If the task has been canceled/interrupted, throw the corresponding exception:
if (thread.isInterrupted())
throw new InterruptedException();

// 2. WRITE THE RESULT FILE:
String fileName = "JobChrono n"+getJobId()+" result.txt";
File f = new File(resultsDir, fileName);

try {
// Build the directory if not existing:

UWS Library v3.0 - C. Getting started Page 16 on 55

http://download.oracle.com/javase/6/docs/api/java/lang/InterruptedException.html

if (!f.getParentFile().exists())
f.getParentFile().mkdirs();

// Write the result:

BufferedWriter writer = new BufferedWriter(new FileWriter(f));
writer.write(time+" seconds elapsed");

writer.close();

// Add it to the results list of this job:
addResult(new Result("Report", "Info", "/uwstuto/jobResults/"+fileName));

} catch (IOException e) {
// If there is an error, encapsulate it in an UWSException so that an error
summary can be published:
throw new UWSException(UWSException.INTERNAL SERVER ERROR, e, "Impossible to
write the result file at \""+f.getAbsolutePath()+"\" !", ErrorType.TRANSIENT);

}
}

As you can see this method is divided in two parts. In the first part we wait as many seconds as needed
until the given time is elapsed. In the second part the result file is written. Once done it is set to the job (line
29) thanks to the method addResult.

Furthermore you can notice at lines 5 and 11 that the interrupted flag is checked. If it is frue the job is
aborted at line 12 by throwing an InterruptedException. Besides if an error occurs while writing the result
file a UWSException is thrown at line 33. By doing that the job is immediately stopped with the execution
phase ERROR.

As you have surely noticed the result file is written in resultsDir while the address given at the creation of
the Result object is "/uwstuto/jobResults". Actually the Result address (absolute or relative) is the one to use
to access the result. It must be a public address (i.e. http://...). In the other hand the address used to write the
file is a file path (file://...), whose the direct access is forbidden out of the server.

However both addresses point exactly on the same file ! Like here, in the most cases, you will have to
make a such difference between the address used to write the file and the one used to read it. What you must
remember is that the Result address must always be used at least to read the result file !

resultsDir is the path of the directory which has to contain all job results files. It is a static attribute of
JobChrono which is set at the initialization of the servlet UWSTimers.

Clearing resources

When the job is removed from its jobs list, the UWS stops it and frees all its resources by calling its
method clearResources(). In our example we create a file at the end of the execution. This file must be
deleted when the job is destroyed otherwise we risk to have some space problems...

protected void clearResources() {
// 1. STOP THE JOB (if running):
super.clearResources();

// 2. DELETE THE RESULT FILE (if any):
try {
File f = new File(resultsDir+"JobChrono n"+getJobId()+" result.txt");
if (f.exists() && f.canWrite())
f.delete();
} catch (Exception e) {
System.err.println("### UWS ERROR: "+e.getMessage()+" ###");
e.printStackTrace();

UWS Library v3.0 - C. Getting started Page 17 on 55

http://download.oracle.com/javase/6/docs/api/java/lang/InterruptedException.html

Conclusion

This tutorial has been done on a very simple example of a UWService. Obviously this UWS library offers
more functionalities (like adding/changing/removing actions to your UWS). To know more about them see
the parts D. How to customize a Job ? and E. How to customize a UWS ?. However among this example

you have learnt to use basically this UWS library, and...

...here are the most important things you should now know:

0%

e CHOOSE The THBE OF w3
o WRITE THE SERMLET

o DEFINE THE J08(3) TO USE

s%
ﬁmﬁhﬂgﬁjﬂﬂr&ﬂ

0 - bn-
¢ Towanoqe® A ffevent ¥wnds of 3©

0 ExtendedUW3
o Crued gdEykend edUWS

5 .
s Tohauesan gwecutiony

o Guqueﬂu%o}‘x:uw:‘-

o GQueusdixk endedlUWS

Exkane \on of be-s-*cmx;ﬂah
& l-r'u:a? =

A covetruckor wvin cm\\! on

tstu'wed |
3 Lk "z woineag 0,

o ocdditional\Par oo
comaters

vepres gk the ok of

OYE ? =1)
. :}robw;:u'll(3
the :jr:-'p

The UNS
. | ols kvock Aasal AbsdrackUW>

o 4sub-clos=es
o BoecW3
] Cﬁueue&%m‘\cu‘tl':‘x
o ExkendedUW=
] &uqua%x*ew&a&uwa

The Serviet

serylet
. luP\m&ni‘afi h\! n'rH:‘r? &Y

&l) wuzk Torw avd olb m‘uenh

. 3y of Yae UWS

‘o guacu’ eﬁe‘umﬂ.

\ﬁ serviet Tmpla‘l'e

ErL
n :}rah‘tlof'ﬁ.{‘j oy ot verpors bty
rob

o cneck wihn

. 4

m*:avru?‘ee L
o wrike the vesutt(s) £\efz), f any
Ph:m Lo concel the

ether the took lhos been

o Anrosw on EXCE
aah wingn on eYroy

aT=11
o 'anCETUU?JfE&E‘KCEPJC\
ov [RROR

SOCUVE.
fov ABORT

o U‘HS'EVCQP‘C‘\ onf

D. How to customize a Job ?

In the part C.3. Defining the job you have learnt that by extending AbstractJob and then overriding the
abstract method jobWork(), you can describe what a job must do during its execution. In this part you will
see that the extension of AbstractJob lets you also customizing your job. For instance: changing the job ID
generation, the date format or how keeping an eye on some jobs with a JobObserver.

Below are the possible job customizations you will see:

1. Job ID

Date format

Execution WITHOUT queue
Execution WITH queue
Error summary

Destruction

7. Keeping an eye on jobs

SANRANE el

Obviously this list is not exhaustive ! Indeed, this library has been designed to leave the most freedom as
possible to the developers. Only some sensitive behaviors or attributes are definitely unmodifiable. Thus if
you have to modify some of the objects defined in this library for your UWS, you may do it by extending the
good classes. For that you will surely need the following class diagram:

A0 EATF s, 1)

B e o Avdeatfaie

R
Cluse

sttt e

TEl =Erdnaae

Awenct e
Jaea

FCHIETE
1ang e Tl B

JebThread
il o
il URSLsusplion <5}

vabued Lduar 43 A3
TR

iaum

Pt Herabs
i
¥ G i Il i) walwrls Abelrul Jnbse
v et g)
¢

. ¢] Tl

N * . et tinnk anager 153

. ik iananane b .
drac ehr o {i}
., P
N
i s,

LR Rl
b Ll ine s s

Annaieuitanp

vt LIS A
e, WSS sl

vl
Selullm, 51y Sy
I

Sbrgoo

HERE R RHE ST AH

!

Il Firer Ty _,-".

i
InkThacn
& T bl Tizs 195]
+a |22: BEstracyob |
Stran)o
nl-hass bedzar

{1 FenrHarfhacn

SCIVETL: 20040
T

waabubserere

WEserlallzer, 321w onnrdi: 31w
rall . UWSSedalzers: vy
M T wIrbr UWSSCAalizer

Ll il ol

.,abm-sz\.".m

[+ aimeibnarmab, Fuscutontinse 6Tt ame, Prrmlaarhace nerfhaess |

UWS Library v3.0 - D. How to customize a Job ? Page 19 on 55

All examples shown in this part of the tutorial are extracted from another UWS example: Algorithms. This
UWS has three jobs lists which each manages a different kind of algorithm (Chvatal, Syracuse and
Ackerman).

1. Job ID

The ID of a job is generated at its creation by the function generateJobld(). By default it is the creation
time in milliseconds and a upper-case letter (starting with 'A’) which is incremented if the resulting ID is
already used.

For instance: if the current date is 2011-01-18T16:50:12.163+0100 you will get: 1295365812163A ; if it is
already used by another job, /1295365812163B, and so on.

However you can change the ID generation by overriding the function generateJobld(). It is what is done
for the jobs of the UWS Algorithms:

public class JobChvatal extends AbstractlJob {

@Override

protected synchronized String generateJobId() {
return "Chvatal "+super.generateJobId();

}

The resulting IDs will be the same than the formers, but prefixed with the name of the type of job (here:
Chvatal).

IMPORTANT

You must ensure that all generated IDs are UNIQUE ! A Job whose the ID is already used is NOT
added to the jobs list.

2. Date format

According to the IVOA Recommendation, all Job dates must have a format compatible with the standard
ISO-8601.

By default AbstractJob follows this standard by using the format yyyy-MM-dd'T'HH:mm:ss.SSSZ. It is
stored in the attribute DEFAULT_DATE_FORMAT, and is used to parse it when the user sets/updates an

attribute of type Date, and to format it when a date has to be displayed (particularly during the serialization
of a Job).

This date format can be changed thanks to the method setDateFormat(DateFormat). Here is an example of
how to use it:

public class JobChvatal extends AbstractJob {

. public JobChvatal(Map<String, String> lstParam) throws UWSException {
super(lstParam);
setDateFormat (new SimpleDateFormat("dd/MM/yyyy HH:mm:ss.SSS"));

Thus any date of Chvatal jobs must follow the format: dd/MM/yyyy HH:mm:ss.SSS (ex: instead of

UWS Library v3.0 - D. How to customize a Job ? Page 20 on 55

"2011-01-18T16:50:12.163+0100" , we must have "18/01/2011 16:50:12.163").
Warning !

All job attributes given in a HTTP request must have the same format than the one defined in the implied
type of Job !

3.a. Execution WITHOUT queue

How does it work ?

As seen previously the task of a job is described by the method jobWork(). During its life the status of a
job may change, but always starts with PENDING. This phase is stored in the attribute phase. In addition to
the getter of this attribute, isRunning() and isFinished() lets indicating whether the job is currently executing
or finished.

The execution of a job can be managed thanks to the following methods:

- start() (=start(false)): Starts the execution of the job.
1. if isRunning()=true then nothing is done !
2. Change the execution phase to EXECUTING (setPhase(ExecutionPhase))
3. Create the thread and start it (its execution will call jobWork())
4. Set the start time (setStartTime(Date))
5. Start the timer for the maximum execution duration if positive and different from 0
+ abort(): Aborts/Interrupts the job.
1. Stop the thread (stop())
2. ifisStopped()=false then return here
3. Change the execution phase to ABORTED (setPhase(ExecutionPhase))
4. Set the end time (setEndTime(Date))
« error(ErrorSummary): Stops immediately the job with the given error.
Stop the thread (stop())
if isStopped()=false then return here
Set the error summary (setErrorSummary(ErrorSummary))
Change the execution phase to ERROR (setPhase(ExecutionPhase))
Set the end time (setEndTime(Date))

+ error(UWSException): Stops immediately the job with the given UWSException.
Call UWSToolBox.publishErrorSummary(AbstractJob, String, ErrorType).

Dk W =

As you can notice there is no method for the case the job ends successfully. Actually it is the role of the
thread ! When the call to jobWork() has just finished, it sets the phase to COMPLETED
(setPhase(ExecutionPhase)) and sets the end time (setEndTime(Date)).

In a UWS to start or to abort a job, a POST request with the parameter PHASE=RUN or PHASE=ABORT
must be sent to the job. As said in the part C.3. Defining the job, this parameter is stored in the
additionalParameters attribute. To apply this parameter, the method applyPhaseParam() must be called,
which is done by default after each update of any job parameter. Thus, we get:

+ PHASE=RUN => start()
+ PHASE=ABORT => abort()

All these methods can also be used if the job is executed alone (that's to say: independently from a UWS) !

Stopping job

The method stop() is used to stop the thread when the user asks to abort the job or when the maximum

UWS Library v3.0 - D. How to customize a Job ? Page 21 on 55

execution duration is elapsed or when an error occurs. However stopping a thread is not so trivial. That's why
you should know some things about the way it is done in this library through the method stop().

Firstly the thread is stopped by calling the function Thread.interrupt(). If the thread is waiting
(Thread.wait()) or sleeping (Thread.sleep(long) then, it will receive an InterruptedException. Otherwise its
interrupted flag is set. That's why you should check as often as possible this flag in jobWork(). If it is true, it
is your responsibility to throw either an InterruptedException or a UWSException. The other solution is to
call yourself the abort() or error(ErrorSummary) function.

Secondly after the interruption of the thread, stop() waits until the thread is really stopped by using
Thread.join(long). The time to wait is by default 1000ms (1 second) and can be changed thanks to
setTimeToWaitForEnd(long).

Changing the execution phase

A job has an attribute which indicates its current status (pending, queued, executing, completed, error, ...),
also called execution phase. All the default possible execution phases are listed in the enumeration class:
ExecutionPhase. Transitions between phases are imposed by the IVOA Recommendation:

Pending

e

T
PHASE=RUN PHAMRT[UWSJ

T

HH_

e 1 PHASE=ABORT [UWS]

J__,,f"
PHASE=ABORT [UWS]

_,,a-""'f
| ~

In order to manage more easily these transitions and particularly to allow their modifications, they are not
managed by AbstractJob but by the class JobPhase. Consequently the current execution phase of a job is got
and set through an instance of JobPhase. So we get the following simplified class diagram:

UWS Library v3.0 - D. How to customize a Job ? Page 22 on 55

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html#join(long)
http://download.oracle.com/javase/6/docs/api/java/lang/InterruptedException.html
http://download.oracle.com/javase/6/docs/api/java/lang/InterruptedException.html
http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep(long)
http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html#wait()
http://download.oracle.com/javase/6/docs/api/java/lang/Thread.html#interrupt()

JobPhase

phase: ExecutionPhase {G,5}
F# job: Abstractjob {G}

+ JobPhase{Abstractjob) (E) ExecutionPhase
+ setPhase(ExecutionPhase, boolean)
setPendingPhase(boolean) PENDING
setRunPhase(boolean) E)L(JIEéJLIJETEI)NG
setQueuedPhase(boolean)
Abstractjob # setExecutingPhase(boolean) RUN

phase: JobPhase {G,S} # setCompletedPhase(boolean) COMPLETED

setAbortPhase(boolean) ERROR

+ getPhase(): ExecutionPhase # setAbortedPhase(boolean) ABORTED

+ setPhase(ExecutionPhase) # setErrorPhase(boolean) ABORT

+ setPhase(ExecutionPhase, boolean force) # setHeldPhase(boolean) UNKNOWN
setSuspendedPhase(boolean) HELD
setUnknownPhase(boolean) SUSPENDED . ;
+ isjobUpdatable(): boolean EF+ qetStr(Execu_tmnPhase Dha_se): String
+ isjobExecutable(): boolean F+ getPhase(5tring str): ExecutionPhase

F3 startjob()
F# stoplab()
=+ toString(): String

How to customize ?

All the above functions can be overrided. Thus with start(boolean), abort(), error(ErrorSummary) and
error(UWSException) you can customize what to do when starting or aborting (with or without error) the
job. Besides the interruption of the thread can also be modified by overriding stop(). You should also
remember that with setTimeToWaitForEnd(long) you can change the maximum time the stop() method must
wait until the end of the thread.

About the execution phases you should know that all the default transitions are already implemented,
except for HELD, SUSPENDED and UNKNOWN which are not used in this library. As you have seen, to
change the current phase you must use the setPhase(ExecutionPhase, boolean) function. Actually it is a kind
of hub between the set... Phase(boolean) functions (i.e. setExecutingPhase(boolean)). There is one function
set...Phase(boolean) per execution phase. Thus if you want to change a phase transition action:

1. Override the corresponding function. For instance to change what is done when going to the
EXECUTING phase you have to override setExecutingPhase(boolean).

2. Once done, set the extension of JobPhase to your uws object thanks to the function
setPhaseManager(JobPhase).

You must take care to the current execution phase before changing it ! For instance: it would be a non-
sense to allow a job going from ERROR to COMPLETED !

Finally if some actions must trigger an action (i.e. RUN => start()):

1. Override applyPhaseParam(),

2. Call the super method,

3. Fetch the PHASE parameter from the additionalParameters attribute,
4. And in function of its value execute the appropriate action.

3.b. Execution WITH queue

How does it work ?

You have surely noticed that there are two functions to start a job: one with no parameter and another with
a boolean parameter. start() always calls the second start method with frue if there is an execution manager,
false otherwise.

An execution manager is an object which implements the ExecutionManager interface. Its goal is to gather
all executing jobs. There is one execution manager per UWS and it is propagated to the managed jobs.

UWS Library v3.0 - D. How to customize a Job ? Page 23 on 55

There are already two default implementations of this interface: DefaultExecutionManager and
QueuedExecutionManager. The first one is the most simple implementation. It has no queue and so it
manages only running jobs. On the contrary QueuedExecutionManager is able to queue any given job if the
number of running jobs exceeds a given number. When a running job ends, the first queued job is removed
from the queue and then executed.

Here is a simplified class diagram for these classes:

T
Abstract Class - executionManager: ExecutionManager {G,5}
«interfaces
< -= implements '
+ -= public 0.1
-= protected -
«ExecutionManagers
StaticMember
F = final + sync()
{G.S} > G for Getter & S for Seter + getRunningjobs(): lterator<Abstractjob=>
) + getMbRunninglobs(): int
F -> final + getQueuedjobs(): terator<Abstractjob>
+ gethbQueuedjobs(): int
+ setMoQueue()
+ hasQueue(): boolean
+ refresh()
+ execute(Abstractjob): ExecutionPhase
+ isReadyForExecution(Abstract]ob): boolean
+ update(Abstractjob)
+ remove(Abstractjob)
&
DefaultExecutionManager QueuedExecutionManager
runningjobs: Map=<5tring, Abstractjob> # runningjobs: Map=String, Abstractjob=
+ DefaultExecutionManager() # queued)obs: Vector<Abstractjob=>
<+ syncl) # nbMaxRunninglobs: int {G,5}
<F+ getRunningjobs(): lterator<Abstractjob=> F+ NO QUEUE: int =0
<F+ gethNbRunninglobs(): int + ExecutionManager()
<+ getQueuedjobsl(): lterator=Abstractjob> + ExecutionManager(int)
<+ getNbQueuedlobs(): int <+ sync()
<+ setNoQueue() <F+ getRunninglobs(): lterator<Abstractjob>
<+ hasQueue(): boolean <F+ getNbRunningjobs(): int
<+ refresh() <F+ getQueued|obs(): Iterator<Abstractjob=>
=+ execute(Abstractjob): ExecutionPhase <F+ getNbQueued)obs(): int
<+ isReadyForExecution(Abstractjob): boolean <+ setNoQueue()
<+ update(Abstractjob) <+ hasQueue(): boolean
<+ remaove(Abstractjob) <+ refresh()

0.1 <+ execute(Abstractjob): ExecutionPhase
<+ isReadyForExecution(Abstractjob): boolean
<+ update(Abstractjob)
=+ remove(Abstract)ob)

0.1
BasicUWS ExtendedUWS QueuedBasicUWS QueuedExtendedUWS

UWS Library v3.0 - D. How to customize a Job ? Page 24 on 55

Now, lets supposing your UWS has an execution manager which can manage a queue
(ExecutionManager.hasQueue() returns true). When you ask to start the job thanks to start(), start(boolean) is
actually called with true as parameter. Then execute(AbstractJob) of the execution manager is called. This
function has to execute or to queue the job according to the value returned by its function
isReadyForExecution(AbstractJob): if true, the job is executed, otherwise the job is queued. Finally to start a
job, the execution manager calls start(boolean) with false. In this case the starting is exactly the same than
with no queue (see D.3.a. Execution WITHOUT queue).

Notes:

» Even if the set execution manager has no queue: start() = start(true). In that way it is possible to
have a list of all running jobs through the used execution manager. It may be very usefull for a UWS
administrator !

« Only if there is really no execution manager: start() = start(false) !

o The methods update(AbstractJob) and remove(AbstractJob) are used only when a job is added or
removed to/from a UWS or when a job ends. Both update the list of running jobs and the list of
queued jobs (if any). See their javadoc for more details.

How to customize ?

QueuedExecutionManager proposes one possible management of an execution queue. If your needs are
different you can either extend QueuedExecutionManager or implement the interface ExecutionManager.
Once done you just have to use the function setExecutionManager(ExecutionManager) on your UWS or on
one or several given jobs (if you want to manage them independently from a UWS).

When changing the execution manager of a UWS, the manager is automatically set to all managed jobs !

4. Error summary

How does it work ?

An error summary is published when any error occurs during the job execution. A full error summary is
composed of three pieces of information: a brief message, an error type (transient or fatal) and a URI/URL
of a detailed message. In all cases if a job has ended with an error, the type of the error and a boolean which
indicates whether there is a detailed message must always be given. Although an error is intended to always
have a detailed message, the "brief message" is optional: it is only a sum up of the full message (or its title).

Now, in this library an error summary is published when any exception - except InterruptedException
which stops the job with the phase ABORTED - occurs during the execution of a job, that is to say during the
call of jobWork(). The publication is done by the function error(UWSException). When an exception is
thrown in jobWork(), it is caught and encapsulated in a UWSException (if needed), which is then given as
parameter of the function error(UWSException).

UWS Library v3.0 - D. How to customize a Job ? Page 25 on 55

http://download.oracle.com/javase/6/docs/api/java/lang/InterruptedException.html

ErrorSummary java

message: String = "(No error message}” {G}
type: ErrorType = FATAL {G} lang

details: String = nuil {G}

+ ErrorSummary(Exception ex, ErrorType errType, String detailedMsgURI)
+ Errorsummary(String msg, ErrorType errType) Exception
+ ErrorSummary(String msg, ErrorType errType, String detailedMsgURI)
F+ hasDetail(): boolean

=<+ serialize(UWSSerializer serializer, String ownerld): String

=+ toString(): String
IE

(E) ErrorType
FATAL # errorType: ErrorType = FATAL {G}

TRANSIENT

UWSException

+ UWSException(String msg)

+ UWSExceptioniString msg, ErrorType type)

+ UWSException(Throwable cause)

+ UWSException{Throwable cause, ErrorType type)

By default the function error(UWSException) only calls the function
UWSToolBox.publishErrorSummary(AbstractJob, String msg, ErrorType):

public abstract class AbstractJob extends SerializableUWSObject {

protected synchronized boolean publishExecutionError(UWSException ue) throws
UWSException {
boolean published = UWSToolBox.publishErrorSummary(this, (ue.getCause() !=
null)?ue.getCause().getMessage() :ue.getMessage(), ue.getUWSErrorType());
if (!published)
throw new UWSException("[Set an error] Impossible to set the given UWS
exception to the job "+jobId+" !");

}

UWSToolBox.publishErrorSummary(AbstractJob, String msg, ErrorType) builds an error summary and
sets the job phase to ERROR. Because it is impossible, in a generic manner, to know where to write a file
with the detailed message of an error, by default only the "brief message" and the error type are set: there is
no detailed message.

How to customize ?

To change the default error publication, you must override the function error(UWSException).

For instance to write a detailed message you can call the other function of UWSToolBox:
publishErrorSummary(AbstractJob, Exception, ErrorType, URL errorFileUrl, String errorsDirectory, String
errorFileName) In this case, the "brief message" and the error type will be filled in the same way than with
the other function, but in addition the stack trace of the given exception will be written in the specified file
(in errorsDirectory/errorFileName). The URL errorFileUrl is used to indicate a public access to read the
detailed message. It will be used to make a redirection when the user types the URI /uws/jobList/job/error.

IMPORTANT

You must take care to check the current execution phase of the job before doing anything ! Indeed
the error summary can be set only if the job has not been already stopped before: the publication of an
error summary MUST set its phase to ERROR.

UWS Library v3.0 - D. How to customize a Job ? Page 26 on 55

5. Destruction

How does it work ?

Destroying a job means that nothing in relation with the job must live or stay any more. In other words the
job is aborted if running, all results files are destroyed and the job is removed from its jobs list. All these
actions are done by the method clearResources(). By default, it is called by the jobs list when
JobList.destroyJob(String) is called or when the whole jobs list is destroyed.

Automatic destruction

A job has by default an attribute destruction which corresponds to the date/time at which the job must be
destroyed. That means that when the date/time is reached the job must be destroyed by its jobs lists. In this
library the responsibility to destroy automatically jobs is given to an object which implements the interface
DestructionManager. By default, a jobs list has one attribute of this type.

When a job list is added to a UWS its destruction manager is replaced by the one of the UWS.
Consequently all jobs list of a UWS have the same destruction manager.

Below is a simplified class diagram of this interface:

Class
«lnterfaces
- JoblList<] extends Abstractjob>
: ; mp;lltiegnents - destructionManager: DestructionManager {G,5}
-> protected F+ updateDestruction(])
F = final
{G,5} -> G for Getter & S for Setter DefaultDestructionManager
0.1 F# jobsToDestroy: TreeSet<Abstractjob=
«DestructionManagers # timDestruction: Timer
currentjob: Abstractjob
currentDate: Date
T sRunning(); boolean + DefaultDestructionManager()
+ gethextDestruction(): Date kfmmcemmmceemmmmceeeeee F# stop()
+ getNextjobToDestroy(): String F# destroyjob(Abstractjob)
+ gethbjobsToDestroy(): int <+ isRunning(); boolean
+ refreshl) <+ getNextDestruction(): Date
+ update(Abstractjob job) <+ getNextJobToDestroy():.String
+ remove(Abstractjob job) <+ gethbjobsToDestroy(): int
<+ refresh()
<+ update(Abstractjob job)
=+ remove(Abstractjob job)

DefaultDestructionManager is a default implementation of the interface DestructionManager. It contains a
list of all known jobs whose the destruction date is set. This list is sorted by ascending destruction time. This
implementation has also a timer which has to destroy the first job of the list (so the job with the earliest
destruction date/time).

When a job is added into a jobs list, the destruction manager is updated by calling
DestructionManager.update(AbstractJob). Then, since the job knows its jobs list, it will notify it at each
modification of its destruction field, by calling JobList.updateDestruction(AbstractJob).

How to customize ?

« To add the destruction of results files or to do any other action which must executed while destroying
the job, you must override the clearResources() method. This has been done for the first UWS
example Timers whose the source code is displayed below:

UWS Library v3.0 - D. How to customize a Job ? Page 27 on 55

public class JobChrono extends AbstractJob {

@Override

public void clearResources() {
// 1. STOP THE JOB (if running):
super.clearResources();

// 2. DELETE THE RESULT FILE (if any):

try {
File f = new File(resultsDir+"JobChrono n"+getJobId()+" result.txt");

if (f.exists() && f.canWrite())
f.delete();

} catch (Exception e) {
("### UWS ERROR: "+e.getMessage()+" ###");
)

’

System.err.println
e.printStackTrace(

« As for the job execution, the job automatic destruction can be modified by implementing the
DestructionManager or by extending its default implementation (DefaultDestructionManager). Then
you just have to set it to your UWS (setDestructionManager(DestructionManager)) or to a jobs list

(setDestructionManager(DestructionManager).
When changing the destruction manager on a UWS, it is also set to all its managed jobs lists !

6. Keeping an eye on jobs

Any object is able to keep an eye on jobs, but more precisely on its execution phase ! Indeed each time the
execution phase of a job changes, this job notifies all the interested objects. These objects must:

1. implement the interface JobObserver
2. and subscribe as observer of the jobs to observe, thanks to the method addObserver(JobObserver).

Abstractfob
- observers: Vector<JobObserver= = {} {G,5}
F+ addObserver(JobObserver): boolean N «JobObservers
F+ getNbObservers(}: int
F+ getObservers(). Iterator<jobObserver= + update(Abstractjob, ExecutionPhase oldPhase, ExecutionFhase newFhase)

F+ removeObserver(JobObserver): boolean
F+ removeAllObserver()
F+ notifyCbservers(ExecutionPhase)

UWS Library v3.0 - D. How to customize a Job ? Page 28 on 55

E. How to customize a UWS ?

In the part C.2. Writing the servlet you have learnt to create a UWS. Then in the section D. How to
customize a job ?, you have seen that you can change the global destruction manager and the global execution
manager.

However by extending AbstractUWS (or one of its subclasses) more points of a UWS can be customized.
For instance you can put more controls on the fields destruction and executionDuration by setting a default
and a maximum value. Besides you will see that a UWS can be viewed as a set of actions (listing jobs lists,
creating jobs, starting jobs, ...). It is also to its responsibility to catch and to manage request errors and to
return UWS resources in the asked format (i.e. XML, JSON, ...).

In this part of the tutorial these and other features of a UWS will be explained so that you can customize
them as you want:

Name, description and home page
UWS administration

User identification

Request interpretation

UWS URL interpretation

Actions

Serialization

Redirection and errors

The interface HttpSessionBindingEvent

A

N

Since this list is not exhaustive at all, you will need the following class diagram to customize other points
of your UWS:

UWS Library v3.0 - E. How to customize a UWS ? Page 29 on 55

PACLGE uws. 5ERVICE /L7/022011)
D Treanns WaArEE SRR Javax |

s servlel
Java
ok
P lang

wHHtpSeAsanBInAIng! Isteners

b s
4 sllenables

ABSTACtURG L catonds JobList v, | exlonos ADSiraetlons

T REr A A

witier imlizer=

RN
AcceptHaadar WSS arlallrar {5} uwsud

el e Wseridentifier < 5
“aeze-Mznag s DestructlonManager 5,51
* [vaenHanMaRAgar {5 5%

IWSERAAlRCr
UWSSmialionr

E e,
== werigliwl UNSSerialicer .

bxtendeduws

b, TlassAhetrRetabss

s Map<joblistenbsiramiobs Loosloder<abstiacub==
cahstractiah = .l

queuedBaslcuw s« extonds abstractiobis

+ CURNEAS A A
L1y Lz U + GuruEd L1
. UWEUE| - 1-te protart

L b aRr g
ket g
.t rbvadar wmge

1y Lz 0
UWsUR w1t prztar

1= LI e

1. Name, description and home page

UWS resource

In the IVOA Recommendation, jobs list and jobs are described as web resources. Thus there is an XML
schema for both of them. About the UWS itself nothing exist: no URI, no XML schema and no actions.

However in this library the UWS can be viewed also as a web-resource. This resource corresponds to the
URI /{fuws} which is the base of all the other URIs: /{fuws}/{job-listl}, /{uws}/{job-list2}, /{fuws}/{job-listl}/
{jobl}, Like a jobs list and a job, this resource returns by default a XML document whose the format is:

UWS Name & Description
The UWS name is by default the corresponding part of the URI. For instance: the URI of the job list

UWS Library v3.0 - E. How to customize a UWS ? Page 30 on 55

timers of the first UWS example is /basic/timers, so the default UWS name is basic. This name can be
changed thanks to the method setName(String).

Changing the UWS name does not change the URI ! If the URI of a UWS is /basic and if you have
changed its name into My first UWS, the URI will still be /basic !

By default a UWS has no description. But if you want, you can set one by using the method
setDescription(String).

Both methods have been used for the second UWS example of this tutorial named Algorithms. Here is the
corresponding source code:

public class MyExtendedUWS extends QueuedExtendedUWS {

public MyExtendedUWS(int nbMaxRunningJobs) throws UWSException {
super (nbMaxRunningJobs) ;

// Set name:
setName("Algorithms");

// Set description:

setDescription("This UWS aims to manage several JobLists. Each one manages one
different type of Job. Jobs are \"famous\" algorithms which may take a long time in
function of their parameters.");

}

Home Page

As said previously the home page of a UWS is its corresponding resource (by default a XML document).
However, you can replace this resource by another one with the method setHomePage(String) or
setHomePage(URL, boolean). With the second method you can specify the URL of the replacement resource
and whether a redirection to this resource must be done. If false, the full content of the specified resource
will be copied when the home page of the UWS will be asked. In another hand, the first method always does
a redirection to the specified resource (which can be either a URL or a URI).

In the second UWS example of this tutorial, the home page of the UWS has been changed in the following
way:

public class UWSAlgorithms extends HttpServlet {

@.i(.)\./erride
public void init(ServletConfig config) throws ServletException {

// Create our UWS (with a user identification):
uws = new MyExtendedUWS(3);

// Set the UWS home page:
uws . setHomePage (contextPath+"/extended.html");

To go back to the default resource, use the method setDefaultHomePage().

Add actions

Provided this resource has not been described in the IVOA Recommendation, there is no actions for this

UWS Library v3.0 - E. How to customize a UWS ? Page 31 on 55

resource contrary to the jobs list and job resources. Nevertheless with this library it is possible: for more
details see the part E.6. Actions.

2. UWS administration

Jobs lists management

As a jobs list is a container of jobs, a UWS is mainly a container of jobs lists. Thus to add a jobs list you
must use the method addJobList(JobList).

Warning !

A job list can be added in a UWS only if there is not already another job list with the same name. Indeed
the name of a job list is used to build its URI. If two jobs list have the same name, there would be no way to
determine the corresponding jobs list from the same URI.

In AbstractUWS two kinds of method can be used to remove jobs lists: removeJobList(String),
removeJobList(JobList) and removeAllJobLists() ONLY remove the specified jobs list(s) from the UWS
whereas destroyJobList(String), destroyJobList(JL) and destroyAllJobLists() also destroy its (their) job(s).

Remember that destroying a job means stopping the job if running and destroying all its resources (thread,
files, ...) (see D.5. Destruction for more details).

And finally, jobs lists can also be retrieved either by their name (hence the name unicity), with the function
getJobList(String), or thanks to an iterator with the function iterator().

Controllers

Since a web-service may be used by many clients (human or software), all the occupied resources may
increase in an unpredictable manner. This, is particularly true for a UWS whose the clients may create more
than one job. Indeed, each job is associated to one thread for its execution and to two managers - one for its
execution and the other for its destruction - which must be notified of any modification of all their managed
jobs. Besides the execution itself may need to generate some additional threads. And obviously one job may
write one or several results files whose the size is likelly unpredictable (it depends of the type of job).

However the computing and the memory resources can be more controlled thanks to the attributes
executionDuration and destruction of all managed jobs. Indeed, provided that all managed jobs are created,
updated and destroyed by requests interpreted in first by the UWS, it is possible for a UWS to allow or to
forbid some ranges of value for these job attributes.

For that a UWS is associated to two objects which let it setting a default and a maximum value for these
attributes. The first one is an instance of ExecutionDurationController and the second one of
DestructionTimeController. Here is a UML class diagram of these classes:

UWS Library v3.0 - E. How to customize a UWS ? Page 32 on 55

PACKAGE uws.service. CONTROLLER (17/02/2011)
By Grégory Mantelet (CDS)

FhpRER R | EGEND #Hebeebbinr

Class
(E) -= Enum class ExecutionDurationController
o = el # defaultDuration: long = Abstractjob. UNLIMITED_DURATION {G,5}

maxDuration: long = Abstractjob. UNLIMITED_DURATION {G,S}
allowModification: boolean = true {G,5}

+ ExecutionDurationController()

+ init{Map=5tring, String= params)

+ control{Abstractjob, Map=String, String=)

+ control{Abstractjob, long)

+ setDefaultExecutionDuration(Abstractjob)

+ setExecutionDuration{Abstractjob, long)

-= protected

StaticMember
F -= final
{G,S} -= G for Getter & S for Setter

StaticMethod
F -= final

DestructionTimeController

F+ NO_INTERVAL: int = 0
defaultTime: Date = null {G,5}

defaultintervalField: DateField = null {G,5}

defaultinterval: int = NO_INTERVAL {G,5} (E) DateField

maxTime: Date = null {G,5} SECOND

maxintervalField: DateField = null {G,5} MINUTE

maxinterval: int = NO_INTERVAL {G,5} HOUR

allowModification: boolean = true {G,5} DAY

+ DestructionTimeController() MONTH

+ init(Map=5String,String= params) YEAR

+ control{Abstractjob, Map=<String, String=) F tFieldindex(): int
+ control{Abstractjob, Date) + getrieldindext): I

+ setDefaultDestructionTime(Abstractjob)
+ setDestructionTime(Abstractjob, Date)
F+ getDateFormat{Abstractlob): DateFormat

Both classes have two common methods: init(Map<String, String>) and control(AbstractJob,
Map<String,String>). The first method is used to initialize the destruction or the execution duration attribute
at the creation of a new job. The map parameter contains all the parameters with which the new job must be
initialized. And the second method checks the destruction or the execution duration attribute given in the
map parameter when a request has for goal to set the specified attribute to the given job.

Note:

Even if these controllers have common methods, there is no common interface because there are only two
job attributes for which there is a real reason to be controlled by a UWS (additional parameters are not
considered here because they are specific to a given type of job, and so there is no reason that they can be
controlled globaly by a UWS). However if it becomes needed to have a common interface and an extendable
list of controllers in a UWS, please send me a mail so that changing the library in this way.

For both of these attributes there is a default value (used only at the job creation) and a maximum value.
They have been both set in the second UWS example - Algorithms:

public class UWSAlgorithms extends HttpServlet {

@0verride
public void init(ServletConfig config) throws ServletException {

// Set the destruction time for all jobs:
DestructionTimeController destController = uws.getDestructionTimeController();
// = job destroyed 1 month after its creation
destController.setDefaultDestructionInterval(l, DateField.MONTH);
// = no modification
destController.allowModification(false);

// Set the execution time for all jobs:
ExecutionDurationController execController =

UWS Library v3.0 - E. How to customize a UWS ? Page 33 on 55

uws.getExecutionDurationController();
// = job execution limited to 3600s (1 hour)
execController.setDefaultExecutionDuration(3600);
// = no modification
execController.allowModification(false);

Information about a UWS

The following functions give several information about the current status of the UWS which can be usefull
for the administrator:

« AbstractUWS:
- getName()
 getDescription()
- getBaseURI(): gets the base URI (that's to say the URI of the UWS)
- getExecutedAction(): gets the last executed action (see E.6. Actions)
- getChoosenSerializer(): gets the serialize used by the last executed action (see E.7_

Serialization)

- ExecutionManager:
+ getNbRunningJobs()
+ getRunningJobs()
« getNbQueuedJobs()
« getQueuedJobs()

QueuedExecutionManager:
- getNbMaxRunningJobs(): gets the maximum number that can run in the same time. The
other jobs are put in the queue.

+ DestructionManager:
- getNextDestruction(): gets the date of the next automatic job destruction
- getNextJobToDestroy()
« getNbJobsToDestroy()

« JobList:
+ getNbJobs(): gets the number of all the jobs
« getNbJobs(String): gets the total number that the specified owner has in this jobs list
« getNbUsers(): gets the number of users that have at least one job in this jobs list
« getUsers(): gets the list of users that have at least one job in this jobs list

« AbstractJob:
- getPhase(): gets the current phase of the job

All these information can be used to display an information page about the UWS, as it has been done in the
second UWS example Algorithms (see E.6. Actions for more details). We could also imagine an
administrator page where some points of the UWS can be dynamically set (for instance: set the number of
maximum running jobs, set the default value for the execution duration or for the destruction time,).

3. User identification

Without a user identification all jobs are visible by anyone. So everybody is able to modify a job
(start/stop/delete it, change its parameters, ...) as he wants. However with this library you can specify a way

UWS Library v3.0 - E. How to customize a UWS ? Page 34 on 55

to identify a user in function of the received request.

How does it work ?

Before interpreting a request the UWS tries to identify the user thanks to an object which implements the
interface Userldentifier. In this interface there is only one function: extractUserld(UWSUrl,
HttpServletRequest). This function must return the ID of the user identified from the given UWS URL and
request.

Notes:

» By default, a UWS does not identify the user (there is no default identifier). Consequently all the jobs
are visible and modifiable by everybody.

« With the function JobList.getJobs(String) you can retrieve only the jobs of the specified user. By
default, it is done by all requests which have to manage jobs lists.

How to customize ?

You have to implement the interface Userldentifier and to set the resulting class to your UWS thanks to the
method setUserldentifier(Userldentifier). Here is the way a user is identified in the second UWS example -
Algor ithms:

public class MyExtendedUWS extends QueuedExtendedUWS {
public MyExtendedUWS(int nbMaxRunningJobs) throws UWSException {

// Add a user identification (by IP address):
setUserIdentifier(new UserIdentifier() {
private static final long serialVersionUID = 1L;

@Override
public String extractUserId(UWSUrl urlInterpreter, HttpServletRequest
request) throws UWSException {
return request.getRemoteAddr();
}

b

Note:

In this example, the user is actually a machine because the user identification is based on an IP address.
Obviously it is not the best way to identify a user, because he can not access its jobs from another machine.
Besides if there are several users on the same machine any of them can access to the same jobs. However this
type of user identification is widely enough for this tutorial !

4. Request interpretation

In C.2. Writing the servlet you have seen that at each request, you have only one thing to do: just call the
method executeRequest(HttpServletRequest, HttpServletResponse). This method is able to interpret any
HTTP request and to execute the corresponding UWS action.

How does it work ?

When a request is sent to the servlet, it is forwarded to the UWS thanks to the method
executeRequest(HttpServletRequest, HttpServletResponse). To interpret the received request, the UWS does

UWS Library v3.0 - E. How to customize a UWS ? Page 35 on 55

three things:

1. Interpret the URL,
2. Identify the user,
3. Look for the corresponding UWS action.

To interpret the URL the method load(HttpServletRequest) of the object UWSUTtl is called. This class is
explained in more details in the next page (E.5. The UWS URL interpretation), but what you have to known is
it lets simplifying the given request so that extracting the UWS URI (/fjobListName}/{jobName}/
{jobAttributes}...). This simplification will help to determine which UWS action must be executed.

The identification of the user may be important for some UWS actions like displaying a jobs list. It is done
by the function extractUserld(UWSUrl, HttpServletRequest) of Userldentifier, explained previously in E.3.
User Identification.

Finally to determine the corresponding UWS action, we loop on the list of all the available actions. Indeed
a UWS can also be viewed as a set of actions. Each action is represented by an extension of the abstract class
UWSAction. Only two functions of this class interest us here (but if you want more information, see E.6.
Actions):

« match(UWSUrl urllnterpreter, String userld, HttpServletRequest request)
« and apply(UWSUrl urllnterpreter, String userld, HttpServletRequest request, HttpServletResponse
response).

The first function is used in the loop to choose the UWS action corresponding to the received request,
whereas the second one is called on the found action. If no matching action can be found, a UWSException is
thrown.

executeRequest(HttpServletRequest, HttpServletResponse) returns a boolean: frue if the found action has
been successfully executed, false otherwise.

How to customize ?

All steps of the request interpretation have been designed to be customizable independently. So
theoretically you have to override the method or to extend the class which correspond to what you want to
customize. For that you need to look at the corresponding part of this tutorial:

« E.5. UWS URL interpretation
« E.3. User identification
« E.6. Actions

Only if you have to add some operations to the current request interpretation or if you want completely
replace it, you would have to override executeRequest(HttpServletRequest, HttpServletResponse).

5. UWS URL Interpretation

In this library there is one very usefull and important class: UWSUTl. Indeed it is used each time a URL of
a UWS must be interpreted and/or generated. So you should be very carefull if you want to customize it ! So
that helping you in the customization, you will find below some explanations about the way a UWS URL is
represented by this kind of object.

URL splitting

As said in the IVOA Recommendation all UWS URIs must be built in a hierarchical manner, according to
REST. UWSUrl splits and generates URLs in the same way. Below are two schemas: the left schema
describes the way UWS URLs are split by UWSUrl ; the right schema shows the splitting of a UWS URL

UWS Library v3.0 - E. How to customize a UWS ? Page 36 on 55

example:

Request URL | hitpi/saada.u-strasbg fruwstuio/basiclimers/ 1298903151979 A /param eterstime |
“,//" "‘x__* _,,—"”j - x\-“‘x_x
L —
URL Haader Feguest URI = —A
| | | —— | http//saada.u-strasba.fr/iuwstuto | /basic/limersA2589021 51979/ parameterstime |
- e — S
| Baseuml | uws uRl | P N
/basic | |.-.irm:-rs.-'12?8?0?'519?9.6,-'p:_4ru||u:'lt-.'s"li|r|e |
- Job List
- timers
- Job
i -~ 1298903151979A
Job Attribute 1

L [porametrs |

-

[me

The base URI (in bold and red in the example) is used as separator between the URL header and the UWS
URL. It is the key of the URL splitting in this class. It is required for any URL interpretation or generation !

Thus you can create a UWSUTrl directly with the base URI (or a URL) or by copying another UWSUrl.
Besides it can also be extracted automatically from a HttpServletRequest object thanks to the function
getServletPath(). This path is set in the web.xml file of your servlet:

By default, the UWS URL interpreter of an AbstractUWS is initialized with the first received request. No
interpreter exists before that ! However you can set one at any moment with the method
setUrlInterpreter(UWSUrl).

URL interpretation

Once the base URI is known, you can use load(URL) or load(HttpServletRequest) to load and to interpret
respectively a URL or a request. The two functions return always the same result except for the URL header
which may be more complete with a request.

Note:

In load(HttpServletRequest), the base URI is always extracted from the given request and is then compared
to the one stored in this class. If they are different nothing is done except calling load(URL).

Each part of the URL can be retrieved individually thanks to its corresponding getter function (i.e.
getUwsURI(), getJobListName(), getJobld(), ...). Besides you can also know if some parts are valued or not:
hasJobList() tells whether the UWS URL indicates at least a job list name, hasJob() tells the same thing but
about a job ID, ...

getUWSName() returns the presumed name of the UWS. This "name" is the last item of the base URI.
However it may not be the real name of the UWS which can be set at any moment with
AbstractUWS.setName(String). Actually getUWSName() is only used by AbstractUWS.getName() to returns
a default value.

URL generation

UWS URLSs can be generated in two ways: by modifying the current instance of a UWSUTrI or by using it
as a base for a new UWSUTIL

a. With modification

A UWSUrl object can be updated thanks to its setter methods. But contrary to the getters, setters exist only
for the UWS URI part (part of the request URL which starts just after the base URI).

UWS Library v3.0 - E. How to customize a UWS ? Page 37 on 55

http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getServletPath()
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html

Lets take an example ! Supposing we have created a UWSUTrl object named uwsUrl with /basic as base
URL. It has been initialized with a UWS URL which lets getting the additional parameter time of the job
1298904240779A. Then only the job ID of the UWS URL is modified thanks to setJobld(String). Here is the
corresponding code:

UWSUrl uwsUrl = new UWSUrl("/basic");
uwsUrl.load(new URL("http://saada.u-
strasbg.fr/uwstuto/basic/timers/1298904240779A/parameters/time"));

System.out.println("BEFORE MODIFICATION:");
UWSToolBox.printURL (uwsUrl);

uwsUrl.setJobId("1298971587132A");

System.out.println("AFTER MODIFICATION:");
UWSToolBox.printURL (uwsUrl);

And the result is:

BEFORE MODIFICATION:

*pkkx UWS URL (/basic) ***x

Request URL: http://saada.u-
strasbg.fr/uwstuto/basic/timers/1298904240779A/parameters/time
Request URI: /basic/timers/1298904240779A/parameters/time

UWS URI: /timers/1298904240779A/parameters/time

Job List: timers

Job ID: 1298904240779A

Attributes (2): parameters time

AFTER MODIFICATION:

*xxkk JWS URL (/basic) ***xx*

Request URL: http://saada.u-
strasbg.fr/uwstuto/basic/timers/1298971587132A/parameters/time
Request URI: /basic/timers/1298971587132A/parameters/time

UWS URI: /timers/1298971587132A/parameters/time

Job List: timers

Job ID: 1298971587132A

Attributes (2): parameters time

As you can notice only the job ID has been changed. Indeed when using a such function all the other parts
of the main request URL are automatically updated.

Notes:

« As shown in the above example, you can use the function UWSToolBox.printURL(UWSUTrI) to display
the content of a UWSUTrI.

» Rather than setting individually each part of a UWS URI you can set the whole URI thanks to the
method setUwsURI(String) !

b. Without modification
To avoid modifying a UWSUTrl object you have three solutions:

1. To create a new UWSUrl() and to initialize it with a base URI and any request URL you want.
(warning: the base URI must be contained in the URL !)

2. To make a copy of an existing UWSUrl() object (thanks to the constructor UWSUrl(UWSUrl)) and
to use the methods described above, directly on the copy.

3. To use one of the following methods which return a modified copy of the current UWSUTrl()
instance:

« homePage()

UWS Library v3.0 - E. How to customize a UWS ? Page 38 on 55

« listJobs(String jobListName)

+ jobSummary(String jobListName, String jobld)

- jobName(String jobListName, String jobld)

« jobPhase(String jobListName, String jobld)

« jobExecDuration(String jobListName, String jobld)

+ jobDestruction(String jobListName, String jobld)

+ jobError(String jobListName, String jobId)

+ jobQuote(String jobListName, String jobld)

- jobResults(String jobListName, String jobld)

+ jobResult(String jobListName, String jobld, String resultld)
+ jobParameters(String jobListName, String jobId)

+ jobParameters(String jobListName, String jobld, String paramName)
« jobOwner(String jobListName, String jobld)

Warning:

The following methods lets generating a URL corresponding to an action on a JobList or a Job:
 createJob(String jobList, Map params)
+ deleteJob(String jobList, String jobld)
- startJob(String jobList, String jobld)
» abortJob(String jobList, String jobld)
« changeJobName(String jobList, String jobld, String newName)
» changeDestructionTime(String jobList, String jobld, String newDate)
+ changeExecDuration(String jobList, String jobld, String newDuration)
« changeJobParam(String jobList, String jobld, String paramName, String param Value)

Since these actions needs to add some HTTP parameters, all these methods return a String which
corresponds to the final request URL.

Besides they are designed for a HTTP-GET request rather than HTTP-POST. But you can use these
functions and then call UWSToolBox.getParameters(String queryPart) to extract the HTTP-GET parameters
into a Map. Then you can use the URL and the parameters map to send a HTTP-POST request through a
servlet.

6. Actions

At each sent request, the UWS identifies the corresponding action (i.e. listing jobs, starting, creating or
displaying a job, ...) and executes it. This library allows you to add and/or remove actions to/from your UWS.
So in this part of the tutorial you will learn how to define your own action(s) and how to add it (them) to your
UWS.

The class UWSAction

So that offering more flexibility, a UWS contains an extendable set of actions. Each one is identified by a
unique name and is able to indicate whether it can be applied considering a given HTTP request. So when
receiving a request, a UWS loops on all its available actions and chooses the one which matches. The match
condition and the action execution are both defined in one class which must extend UWSAction.

To sum up, an extension of UWSAction must define two functions:

- match(UWSUrl, HttpServletResquest): Indicates whether the given request (with the given UWS
URL) corresponds to this action.

- apply(UWSUrl, HttpServletRequest, HttpServletResponse): Does what the action is supposed to
do.

UWS Library v3.0 - E. How to customize a UWS ? Page 39 on 55

Obviously all UWS actions described by the IVOA Recommendation are already implemented. Here is

their corresponding class:
« Listing jobs: ListJobs
+ Adding a job: AddJob
+ Destroying a job: DestroyJob
+ Getting a job summary: JobSummary

+ Getting the value of a job parameter: GetJobParam

« Adding/Updating the value of a job parameter: SetJobParam

ShowHomePage is also a sub-class of UWSAction, but is not an action described by the IVOA
Recommendation. This action corresponds to the URI: /fuws} (the base UWS URL actually).

Below is the class diagram of all existing actions:

PACKAGE uws. service ACTIONS (17/02,/2011) ~
Iy Corépary Mantelet [

LEGEND I, IWhArtian <) extands Johi 15t <[>, | extends Anctractiahs

Llass =TCEC: S Tlno=" 5 lohe "

Ahstracti Iass F+ ADC_J08: Sl 1~ !\dd Iub
(E) = Enum ¢clazs

= - im3 emerts
+ = pubhz

- = auate

=pretocted

1+ | ! II\‘1I'1AI!\ i rlnu_ i.PT Jnky'

- g

I SET IO _>ARANM: St113="327 130 >J-ameter”

F+ HCHE_FASE: Slring="Show UwS Hung 24y’
F& uws: AbstractUWS<]L = 5"

£ LwsaerinalARRTTACUIN S <]l =)

Stat chz—te- I gethemet String
F-=-rzl o o | getCeserptiontt 57ring
{005 == Gifer Gerter b S fer fietrer Fre gallobs isL{UWIS U L
F& getjobiUWSUrl):)

“F- suLals(0
=— ta5mringll 3zring

il Ed

AbnlraciMethod 1 # getjab(UwesLUr 1)
Stat cMachod i marchiWsUA, String userld, HpsondotRequasty poolean
F-=-ral I apphAURSURL STRRg Userld, RUpSerdetRrquest. HITpSOrveIResponscl boolean

listpnhs<l ewtends bl ist<)=, | extends Abstractjohs

JobSummary <)l extends |nbl ist <)z,) #xtends Abstract)ohs

+1 mrjnhq ahqrrnmmﬁ-:jl NEY]

< QCIJC" rodan strrg
=~ malch{UWSUr] Slring userld, FLpSarde Regues . Luclean
w— pphiUWSUr, Sti93 as21d dHpSeletRecoest, ddpSenletResponse): boclean

+ |nniim el Abstract LW <1,)=

= grtdamedi: ftiag

< getIesctadonlk stiag

== malcl (UWSUL Sl userld, HlpSerds Reguesly: Lucles)

=— zrphAUWSUr, Steing us24d dtaSzvletRecuzst ddpSernletResponse): Eoclean

Addjab<l extends Jnbllste)s, | rdends Abstractjohs

GetobParame)l extends Jobl Iste)s, | extends Ahstrac]obs

+ Addinn AhstrActWS <l ,) =)

= getdamzl Eting

e el dasir vl Shiry

=~ malch{UWSUr] Slring userld, FLpSarde Regues . Luclean

w— pphiUWSUr, Sti93 as21d dHpSeletRecoest, ddpSenletResponse): boclean

+ Gigtlnbl ara~(AbStractWS<)l J=)

= getamedt: Sting

e el Jaseriviv) Sl

== malel (UWSUrL Shy serld, HolpSerds RegquesL): Lucles

=— zrphAUWSUr, Steing us24d dtaSzvletRecuzst ddpSernletResponse): Eoclean

Destroylob<IL cxtends JobList<)>, | extends Abstractjob>

+ DestreynnAbstractllWhal) =)

< gotdamzlh g

e gl Dasin uiuil Sliory

=— matchiUWSUA, String Lserld, FtzpSerd=-Reques:): Ecclean

== spphiUWSUrl, St443 gs24d dHpSeletReciest, JHpSenletResponse): boclean

Sctlobraram</L extends JobLIst<)>, | extends Abstractlob>

+ fefjnbl'aramiAhstract LW S, =]

< getdamedt: £t

wm gl Desceiviul Sliny

w— matchiUWSUA, Strrc cserld, HbpSerd=Request): boclezr

== spphAUNWSUr, Steing us2dd dtadsletRecuzst dHpSernletResponse): Eoclean

showHomerRago<IL cxtends JobList<)>, | extends Abstractjob>

= skew lomerage(Abstract LIVS <L,)=

=1 gethema String
<+ gelbesuripliont) 5.ring

=+ mazclUWSUr, Stiguszdd a3z vietReciest): boolzas
=+ applylLIWSLIA, Sirng 1.serld, | ptierd=-llequest, | t-phery #liesanase] sanlzan

How does it work ?

AbstractUWS is an ordered set of UWSActions. Its attribute uwsActions groups together all its possible
actions. When a user sends a request to the servlet, the function AbstractUWS.executeRequest(...) is called.
This one will choose the action corresponding to the received HTTP request by iterating in uwsActions:

public abstract class AbstractUWS<JL extends JobList<J>, J extends AbstractJob> {

public boolean executeRequest(HttpServletRequest request, HttpServletResponse

UWS Library v3.0 - E. How to customize a UWS ?

Page 40 on 55

response) throws UWSException, IOException {

boolean actionFound = false;
for(int i=0; 'actionFound && i<uwsActions.size(); i++){
if (uwsActions.get(i).match(urlInterpreter, userIld, request)){
actionFound = true;
actionApplied = uwsActions.get(i).apply(urlInterpreter, userld, request,
response) ;

}
if ('actionFound)

throw new UWSException(UWSException.NOT IMPLEMENTED, "[Execute UWS request]
This UWS action is not supported by this UWS service !");

}

As you can notice, the actions of a UWS are evalutated in the order with their function
UWSAction.match(UWSUrl, String, HttpServletRequest). If it returns true the method apply(UWSUrl,
String, HttpServletRequest, HttpServletResponse) is called to execute the action. If false we try with the next
action, and so on.

How to customize ?

UWSAction is an abstract class: the functions match(UWSUrl, String, HttpServletRequest) and
apply(UWSUrl, String, HttpServletRequest, HttpServletResponse) must be overrided. Besides the attribute
uwsActions of AbstractUWS is a vector and several getters and setters let managing easily the list of actions
available for a given UWS. Thus to customize this part of your UWS you have to:

1. Extend UWSAction (or one of its sub-classes)
2. Update your UWS

To illustrate a such customization lets see how the action AboutAction has been added to UWSAlgorithms.
This additional action has to display some information about UWSAlgorithms (name, description, number of
jobs lists, ...) but also some statistics about its jobs.

1. Extend UWSAction

Any type of UWS action must have a name, a kind of action ID. So this name must be unique for each
type of action, that is to say for each extension of UWSAction. The name does not have to change at each
instantiation, it is used to distinguish the different type of action in a given UWS ! It is returned by the
function getName(), which is not abstract, but returns by default the absolute name of the java class.

The name of the default UWS actions are stored as final class variable in UWSAction:

« LIST_JOBS="List Jobs" for the class ListJobs

« ADD_JOB="Add Job" for the class AddJob

- DESTROY_JOB="Destroy Job" for the class DestroyJob

+ JOB_SUMMARY="Get Job" for the class JobSummary

« GET_JOB_PARAM-="Get Job Param" for the class GetJobParam

« SET JOB_PARAM-="Set Job Param" for the class SetJobParam

+ HOME_PAGE="Show UWS Home Page" for the class ShowHomePage

The name of our additional action - AboutAction - will be:

public class AboutAction<JL extends JobList<J>, J extends AbstractJob> extends
UWSAction<JL, J> {

UWS Library v3.0 - E. How to customize a UWS ? Page 41 on 55

public AboutAction(AbstractUWS<JL, J> u) {
super(u);

@Override

public String getName() {
return "About UWS";

1

After the name of the action you have to define at which condition it must be applied: the function
UWSAction.match(UWSUTrl, String, HttpServletRequest). You must be very careful when overriding this
function ! Indeed the tested condition has to be as precise as possible so that avoiding to forget this action
or to trigger this action rather than another one. For instance, the difference between ListJobs and AddJob is
thin: the HTTP method (GET for ListJobs and POST for AddJob). To avoid the confusion the HTTP method

must absolutely be tested.

Here is their match(...) function:

public class AddJob<JL extends JoblList<J>, J extends AbstractJob> extends UWSAction<IJL,

J> {

public boolean match(UWSUrl urlInterpreter, String userId, HttpServletRequest
request) throws UWSException {

return (urlInterpreter.getJobListName() !'= null // jobs list specified
&& urllInterpreter.getJobId() == null // no job specified
&& request.getMethod().equalsIgnoreCase("post")); // HTTP-POST

public class ListJobs<JL extends JobList<J>, J extends AbstractJob> extends
UWSAction<JL, J> {

public boolean match(UWSUrl urlInterpreter, String userId, HttpServletRequest
request) throws UWSException {
return (urlInterpreter.getJobListName() !'= null // jobs list specified
&& urlInterpreter.getJobId() == null // no job specified
&& request.getMethod().equalsIgnoreCase("get")); // HTTP-GET

In our example, AboutAction will be applied when the URL is the base UWS URL and only when the
parameter ACTION has the value ABOUT. The HTTP method does not matter here, because the parameter is

enough to distinguish this action from ShowHomePage (which has no parameter).

public class AboutAction<JL extends JobList<J]>, J extends AbstractJob> extends
UWSAction<JL, J> {

N @Override

public boolean match(UWSUrl urlInterpreter, String userId, HttpServletRequest
request) throws UWSException {

return urlInterpreter.getJobListName() == null // no jobs list specified

&& request.getParameter ("ACTION") != null // at least, 1 parameter = ACTION
&& request.getParameter("ACTION").equalsIgnoreCase("about"); // its value

must be ABOUT (not case sensitive)

}

And finally: the function apply(UWSUrl, String, HttpServletRequest, HttpServletResponse). AboutAction

must write a HTML page with some information about the UWS Algorithms:

UWS Library v3.0 - E. How to customize a UWS ? Page 42 on 55

+ name, description and base UWS URL

- status of the execution queue and of the executing jobs list
« available UWS serializers

- available UWS actions (name + description)

- name and content of all the jobs lists

Here is the full source code:

public class AboutAction<JL extends JobList<J>, J extends AbstractJob> extends
UWSAction<JL, J> {

@Override
public boolean apply(UWSUrl urlInterpreter, String userId, HttpServletRequest
request, HttpServletResponse response) throws UWSException, IOException {
response.setContentType("text/html");

PrintWriter out = response.getWriter();

BufferedReader reader = new BufferedReader(new
FileReader(request.getSession().getServletContext().getRealPath("/about header.txt")));
try{
String line null;
while((line reader.readlLine()) '= null)
out.println(line);
}finally { reader.close(); }

out.println("<hl>About the UWS Algorithms</hl>");

out.println("<h2>UWS Algorithms</h2>");

out.println("");

out.println("Name: "+uws.getName()+"</1i>");

out.println("Description:<p style=\"margin-bottom: 0; padding-bottom:
O\">"+uws.getDescription()+"</p></1i>");

out.println("Base UWS URL: "+uws.getBaseURL()+"
");

out.println("Nb Queued Jobs: "+uws.getNbQueuedJobs()+"</1i>");

out.print("Nb Running Jobs: "+uws.getNbRunningJobs());
if (uws.getNbRunningJobs() > 0){
Iterator<J> it = uws.getRunningJobs();
String runningJobs = null;
while(it.hasNext())
runningJobs = ((runningJobs==null)?"":(runningJobs+", "))
+it.next().getJobId();
out.print(" ("+runningJobs+")");
}

out.println("</1i>");

out.println("Nb Max Running Jobs: 3</1i>");
out.println("Nb Jobs Lists: "+uws.getNbJobList()+"</1i>");
out.println("");

out.println("<h2>"+uws.getNbSerializers()+" Available Serializers</h2>");
out.println("");
Iterator<UWSSerializer> itSerializers = uws.getSerializers();
while(itSerializers.hasNext()){
UWSSerializer serializer = itSerializers.next();
out.println(""+serializer.getMimeType()+"</1i>");

}
out.println("");

out.println("<h2>"+uws.getNbUWSActions()+" Available Actions</h2>");
out.println("");
Iterator<UWSAction<JL,J>> itActions = uws.getUWSActions();
while(itActions.hasNext()){

UWSAction<JL,J> action = itActions.next();

UWS Library v3.0 - E. How to customize a UWS ? Page 43 on 55

out.println(""+action.getName()+"<p style=\"margin-bottom: 0;
padding-bottom: O\"><i>"+action.getDescription()+"</i></p></1i>");
}
out.println("");

out.println("<h2>Jobs Lists</h2>");
out.println("<table style=\"text-align: center; width: 100%;\">");
out.println("<tr><th></th><th>Users</th><th>Jobs</th><th>Pending</th><th>Queued<
/th><th>Running</th><th>Complete</th><th>Error</th><th>Aborted</th><th>0thers</th></tr>"
);
for(JL jU : uws){
int nbPending=0, nbQueued=0, nbRunning=0, nbComplete=0, nbError=0,
nbAborted=0, nbOthers=0;
for(J job : jL){
switch(job.getPhase()){
case PENDING: nbPending++; break;
case QUEUED: nbQueued++; break;
case EXECUTING: nbRunning++; break;
case COMPLETED: nbComplete++; break;
case ERROR: nbError++; break;
case ABORTED: nbAborted++; break;
default: nbOthers++; break;

}

out.println("<tr><td>"+jl.getName()

+"</td><td>"+(jl.getNbUsers()<=0?"-":jl.getNbUsers())+"</td><td>"+
(jl.getNbJobs()<=0?"-":j1.getNbJobs())+"</td><td>"+(nbPending<=07?"-":nbPending)
+"</td><td>"+(nbQueued<=07?"-":nbQueued)+"</td><td>"+(nbRunning<=07"-":nbRunning)
+"</td><td>"+(nbComplete<=0?"-":nbComplete)+"</td><td>"+(nbError<=0?"-":nbError)
+"</td><td>"+(nbAborted<=0?"-":nbAborted)+"</td><td>"+(nb0thers<=0?"-":nb0thers)
+"</td></tr>")

}

out.println("</table>");

’

reader = new BufferedReader(new
FileReader(request.getSession().getServletContext().getRealPath("about footer.txt")));
try{
String line null;
while((line reader.readlLine()) '= null)
out.println(line);
}finally { reader.close(); }

out.close();

return true;

2. Update your UWS

Once finished, your extension of UWSAction can be added/setted in your UWS. For that you have three
ways:

« An addition: addUWSAction(UWSAction)
+ Aninsertion: addUWSAction(int, UWSAction)
+ A replacement: setUWSAction(int, UWSAction) or replaceUWSAction(UWSAction)

All these methods work ONLY IF no action with the same name already exists in the UWS ! The only
exception is replaceUWSAction(UWSAction) whose the goal is to replace a UWSAction by another one with
the same name.

In UWSAIlgorithms AboutAction is inserted:

UWS Library v3.0 - E. How to customize a UWS ? Page 44 on 55

public class MyExtendedUWS extends ExtendedUWS {

public MyExtendedUWS (URL baseURL) throws UWSException {

super(baseURL) ;
addUWSAction (0, new AboutAction<JobList<AbstractJob>,

AbstractJob>(this));
}

Note: Be very careful with the action position !

The action has been inserted at the first position, to be sure it will be always evaluated ! Here it is
necessary that this action is tested, at least, before ShowHomePage, because ShowHomePage matches even if

there are parameters.
Obviously in AbstractUWS you can also:

- iterate on all actions: getUWSActions()
« search the action which has a given name: getUWSAction(String)
+ and remove actions: removeUWSAction(int) and removeUWSAction(String).

UWS Library v3.0 - E. How to customize a UWS ? Page 45 on 55

UwSsurl

reguestURL: String {G}

urlHeader: String {G}

requestURl: String {G}

F3 baselURl: String {G}

uwsURIL String {G,57

jobListName: String {G, S}

jobld: String {G. S5}

attributes: String[] {G. 5}

+ UWSUrUWSUTrI toCopy)

+ UwWsUrl(5tring baseURI)

+ UWSUrl(HttpSenvletRequest)

extractBaselURI(HttpServietRequest): String
F3 normalizelRI(String uri): String
+ load(HttpServietRequest)

+ load(URL)

loadUwsURI()

F+ getUwsSMame(): String

F+ haslobList(): boolean

F+ hasjob(): boolean

F+ hasattribute(): boolean

F+ hasAttribute(String attName): boolean
updateUwsURI()

updateRequestURL()

F+ homePage(): UWSUrl

F+ listjobs(String): UWSUTrI

F+ jobSummary(String, String): UWSUTrI

F+ jobMame(String, String): UWSUrl

F+ jobPhase(String, String): UWSUrI

F+ jobExecDuration(5String, String): UWSUTrI

F+ jobDestruction({String, String): UWSUTrI

F+ jobError(String, String): UWSUrI

F+ jobQuote(String, String): UWSUTrI

F+ jobResults(String, String): UWSUrl

F+ jobResult{String, String, String): UWSUrl

F+ jobParameters(String, String): UWSUTrI

F+ jobParameter(String, String, String): UWSUrl

F+ jobOwner(String, String): UWSUrI

+ toURL(): URL

+ toURI(): String

<+ toString(): String

----------------- OMLY FORHTTP-GET - - ---------- e s m e e e e e e e oo - -
F+ createjob(String, Map=5tring,5tring=): 5tring

F+ deletejob(String, String): String

F+ startjob(String, String): String

F+ abortjob(String, String): String

F+ changelobMName(String, String, String newName): String

F+ changeDestructionTime(String, String, String newDate): String
F+ changeExecDuration(5tring, String, String newDuration): String
F+ changelobParam(5tring, String, String paramMame, String paramvalue): String

How to customize ?

By default the base URI is extracted from a HttpServletRequest by extractBaseURI(HttpServletRequest).
This function only calls HttpServletRequest.getServletPath(). Consequently if you want to change the
extraction of this URI, you just have to override extractBaseURI(HttpServletRequest).

UWS Library v3.0 - E. How to customize a UWS ? Page 46 on 55

http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getServletPath()
http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html

However if you intend to change the URL splitting or the whole UWS URL structure, you will have to
override all the other functions:

- load(HttpServletRequest) and load(URL):
They both fetch the request URI and the UWS URI. Then they call loadUwsURI().

+ loadUwsURI(Q):
extracts all parts (jobListName, jobld and attributes) of the stored UWS URI.

« updateUwsURI():
updates the UWS URI with the stored job list name, job ID and attributes. At the end,
updateRequestURL() is called.

+ updateRequestURL():
updates the request URL and URI with the stored UWS URI, base URI and URL header.

One more time, this class is very important and you should take care of any of your modifications ! By the
way I hope the UML class diagram opposite will help you to better understand this class and to extend it if
needed.

7. Serializations

As said previously all UWS resources are formatted by default in XML according to the IVOA
Recommendation. With this library it is possible to manage more formats. Besides the format to use is
choosen in function of the HTTP header Accept, and so, of the specified MIME types.

The classes UWSSerializer and SerializableUWSObject

The class UWSSerializer is the abstract class used to define the serialization of any UWS resource in a
given format. XMLSerializer and JSONSerializer correspond respectively to the XML and the JSON
formats.

Notes:

» The XML format is defined by the IVOA Recommendation thanks to this XML schema.
» The JSON format is already managed in this library. It respects the following format: JSON Model
» The most common MIME types are already stored as constant class attributes in UWSSerializer:

« MIME_TYPE XML: "application/xml"

« MIME _TYPE_JSON: "application/json"

 MIME _TYPE_TEXT: "text/plain”

« MIME _TYPE _HTML: "text/html"

All UWS objects extend the abstract class SerializableUWSObject. Only one function is abstract:
serialize(UWSSerializer, String ownerld). It lets calling the good method of the given UWSSerializer (ex: in
JobList the function UWSSerializer.getJobList(...) is called) and may consider the given owner ID to adapt
the returned content to the current user (ex: in JobList a user can not get the job of another user, he gets only
its own jobs). Thus you just have to call any method of SerializableUWSObject on the UWS objects to
"serialize" them.

UWS Library v3.0 - E. How to customize a UWS ? Page 47 on 55

http://saada.u-strasbg.fr/uwstuto/download?file=json
http://www.ivoa.net/xml/UWS/v1.0

java

sherializables

SerializableUWs0bject

+ serialize{lUWSSerializer): String

+ serialize(UWS5erializer, 5tring ownerld). 5tring

+ serialize{OutputStream, UWSSerializer)

+ serialize(OutputStream, UWSSerializer, String ownerld)

How does it work ?

Any HTTP request sent to a UWS ends with the serialization of a UWS resource. So the corresponding
UWS action has to make a serialization of the asked objects in the specified format. As said previously this
format is given by the HTTP header Accept. It gives a list of allowed formats which is actually an ordered list
of MIME types. The choice of the format to apply is done by the method AbstractUWS.getSerializer(String)

which takes the full MIME types list.

UWSserializer

F+ MIME_TYPE_XML: String

F+ MIME_TYPE_JSOMN: String
F+ MIME_TYPE_TEXT: String
F+ MIME TYPE HTML: String

+ getjob{Abstractjob, String, boolean): String

+ getUWS(AbstractUWS): String

+ getjoblist{JobList, boolean): String

+ getMimeType(): String

+ getlUWsSAbstractUWs, String): String

+ getfobList(jobList, 5tring, boolean): 5tring

+ getfobfAbstractfob, boolean): 5tring

+ getfobiDiAbstractjob, boolean): String

+ getRuniDiAbstractjob, boolean). 5tring

+ getOwnerld(AbstractJob, boolean): String

+ getPhase(dbstractjob, boolean). 5tring

+ gerQuotefAbstractjob, boolean). 5tring

+ getstanTimeAbstractiob, boolean): String

+ getendTimeAbstractjob, boolean): 5tring

+ getExecutionDuration(Abstractjob, boolean). String
+ getDestructionTime(Abstractiob, boolean): String
+ geterrorsummardErroersummany boolean). 5tring
+ getResults(Abstractjob, boolean): 5tring

+ getResult(Result, boolean). 5tring

+ getAdditionalParameters(Abstractjob, boolean): String
+ getAdditionalParameter(tring, String, boolean): String

XMLSerializer JSONSerializer

tabPrefix: String # tabPrefix: String

¥sltPath: String {G,S} + JSONSerializer(}

+ XMLSerializer()

+ XMLSerializer(5tring)

+ getHeader(): String

F# getUWShamespace(boolean)

Below is the way that the action ListJobs returns the serialization of the specified job list:

UWS Library v3.0 - E. How to customize a UWS ?

Page 48 on 55

public class ListJobs<JL extends JobList<J>, J extends AbstractJob> extends
UWSAction<JL, J> {

@Override
public boolean apply(UWSUrl urlInterpreter, String userId, HttpServletRequest
request, HttpServletResponse response) throws UWSException, IOException {
// Get the jobs list:
JL jobsList = getJobsList(urlInterpreter);

// Write the jobs list:

UwWSSerializer serializer = uws.getSerializer(request.getHeader("Accept"));
response.setContentType(serializer.getMimeType());
jobsList.serialize(response.getOutputStream(), serializer, userlId);

return true;

AbstractUWS has a list of UWSSerializer instances: the attribute serializers.
AbstractUWS.getSerializer(String) chooses the serializer corresponding to the prefered MIME types among
the given list. If there is no match the default serializer (specified by the attribute defaultSerializer) is

returned.
How to customize ?

You can add or remove easily some serializers to you UWS thanks to the functions:
addSerializer(UWSSerializer) and removeSerializer(String mimeType).

It is also possible to iterate on all existing serializers thanks to getSerializers() as it is done in the
additional action About of the UWS Algorithms.

Besides you can change the default serializer with setDefaultSerializer(String).

As in the version 2 of this library, it is also possible to associate a XML document to a XSLT style-sheet. It
must be done in the instance of XMLSerializer used by your UWS, with the function
XMLSerializer.setXSLTPath(String). As in the previous version, the function
AbstractUWS.setXsItURL(String) still works. But now it calls the function
XMLSerializer.setXSLTPath(String) on the used instance of XMLSerializer.

The UWS Algorithms uses this function to set the XSLT style sheet to any XML output:
public class UWSAlgorithms extends HttpServlet {

. @Override

protected void service(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {

}).Sets the XSLT URL:
uws.setXsltURL(req.getContextPath()+"/styles/uws.xsl");

Warnings:

« All serializers of a UWS must have a different MIME type. Otherwise addSerializer will not add the
given serializer.

« The value of the attribute defaultSerializer is a MIME type and it MUST correspond to an existing
serializer.

UWS Library v3.0 - E. How to customize a UWS ? Page 49 on 55

+ Take care that there is always one serializer (the default one, of course) !

Trick !

Some formats are often associated with several MIME types, like XML (application/xml and text/xml). If
you want to associate several MIME types to one serializer, you can add manually some entries in the map
attribute serializers. For instance:

public class MyExtendedUWS extends ExtendedUWS {

public MyExtendedUWS(URL baseURL) throws UWSException {
super(baseURL);
addUWSAction (0, new AboutAction<JobList<AbstractJob>, AbstractlJob>(this));
if (hasSerializerFor(UWSSerializer.MIME TYPE XML))
serializers.put("text/xml", getSerializer(UWSSerializer.MIME TYPE XML));

(MIME_TYPE_XML="application/xml")

8. Redirection and errors

In your servlet, after the initialization of your UWS, the only interaction with it is done at each HTTP
request when calling executeRequest(HttpServletRequest, HttpServletResponse). Many occasions to throw an
exception may occur during this call and particularly while executing an action. That's why this method is
able to catch these errors. Its behavior in function of the occurred errors can be customized. Hence this part
of the tutorial which will explain you in first how errors are caught and what is done with them.

Warning

The errors explained in this part are only about the UWS management. They must not be confused with
the errors which occur during the execution of a job (those they are thrown within AbstractJob.jobWork()).
These last one are already managed: they are stored as ErrorSummaries in the corresponding job. See C.3.
Defining the job - Writing the task and D.4. Error summary for more details.

How does it work ?

The whole content of executeRequest(HttpServletRequest, HttpServletResponse) is put into a #ry block, so
that any instance of UWSException can be caught. This kind of exception is thrown only by this library, and
particularly when a UWS action is executed. So when an exception occurs the method
sendError(UWSException, HttpServletRequest, HttpServletResponse) is called. By default, it displays an
Apache error with the given HTTP error code and the given message, except if the HTTP error code is 303
(= See Other). In this last case a redirection is made thanks to the method redirect(String,
HttpServletRequest, HttpServletResponse):

public abstract class AbstractUWS<JL extends JobList<J>, J extends AbstractJob> {

public void sendError(UWSException error, HttpServletRequest request,
HttpServletResponse response) throws IOException, UWSException {
if (error.getHttpErrorCode() == UWSException.SEE OTHER)
redirect(error.getMessage(), request, response);
else
response.sendError(error.getHttpErrorCode(), error.getMessage());

UWS Library v3.0 - E. How to customize a UWS ? Page 50 on 55

Nevertheless any other kinds of exception may also occur. For that reason, a second catch block has been
added to catch Exception. In this block the function sendError(Exception, HttpServletRequest,
HttpServletResponse) is called, which prints the stack trace of the exception in the standard output and then
displays an Apache error with the given error message:

public abstract class AbstractUWS<JL extends JobList<J>, J extends AbstractJob> {

public void sendError(Exception error, HttpServletRequest request,
HttpServletResponse response) throws IOException, UWSException {
error.printStackTrace();
response.sendError (UWSException.INTERNAL SERVER ERROR, error.getMessage());

Obviously the second function can also be used for UWSException, but the result will be different,
especially about the management of the HTTP error code: no more redirection will be done anymore.

Note:

Because of redirect(...), sendError(Exception, ...) and sendError(UWSException, ...), the method
executeRequest(HttpServietRequest, HttpServietResponse) may also throw exceptions (UWSException and
LIOException). That's why you should put the call to this method in try...catch block !In that way you can still
manage errors as you wish.

How to customize ?

The three methods sendError(Exception, HttpServletRequest, HttpServletResponse),
sendError(UWSException, HttpServletRequest, HttpServletResponse) and redirect(String,
HttpServletRequest, HttpServletResponse) can be overrided. However you should still beware of the
specified status code with the UWSException so that errors with the 303 status code always make a
redirection to the URL given in the exception message.

For instance, the UWS Algorithms has been modified so that errors are displayed in a different way:

public class MyExtendedUWS extends ExtendedUWS {

@Override
public void sendError(UWSException error, HttpServletRequest request,
HttpServletResponse response) throws IOException, UWSException {
// Reset the whole response to ensure the output stream is free:
if (response.isCommitted())
return;
response.reset();

// If HTTP status code = 303 (see other), make a redirection:
if (error.getHttpErrorCode() == UWSException.SEE OTHER)
redirect(error.getMessage(), request, response);

// Else, display properly the exception:

else{
// Set the HTTP status code and the content type of the response:
response.setStatus(error.getHttpErrorCode());
response.setContentType(UWSSerializer.MIME TYPE HTML);

PrintWriter out = response.getWriter();

// Header:

out.println("<html>\n\t<head>");

out.println("\t\t<meta http-equiv=\"Content-Type\" content=\"text/html;
charset=UTF-8\" />");

out.println("\t\t<link

UWS Library v3.0 - E. How to customize a UWS ? Page 51 on 55

http://download.oracle.com/javase/6/docs/api/java/io/IOException.html
http://download.oracle.com/javase/6/docs/api/java/lang/Exception.html

href=\""+UWSToolBox.getServerResource("styles/uwstuto.css", request)+"\"
rel=\"stylesheet\" type=\"text/css\" />");

out.println("\t\t<title>UWS ERROR</title>");
out.println("\t</head>\n\t<body>");

// Title:
String errorColor = (error.getUWSErrorType() ==

ErrorType.FATAL)?"red":"orange";

out.println("\t\t<hl style=\"text-align: center; background-

color:"+errorColor+"; color: white; font-weight: bold;\">UWS ERROR -
"+error.getHttpErrorCode()+"</h1>");

// Description part:
out.println("\t\t<h2>Description</h2>");
out.println("\t\t");
out.println("\t\t\tType: "+error.getUWSErrorType()+"</1i>");
String msg = error.getMessage();
int start=msg.indexOf("["), end=msg.index0f("]");
String context=null;
if (start >= 0 && start < end){
context = msg.substring(start+1l, end);
msg = msg.substring(end+1);

if (context !'= null)
out.println("\t\t\tContext: "+context+"</1i>");
out.println("\t\t\tException: "+error.getClass().getName()

+'</1i>");
out.println("\t\t\tMessage:<p>"+msg+"</p></1i>");
out.println("\t\t");
// Stack trace part:
out.println("\t\t<h2>Stack trace</h2>");
out.println("\t\t<table style=\"width: ihnerit;\">");
out.println("\t\t\t<tr><th>Class</th><th>Method</th><th>Line</th></tr>")
StackTraceElement[] trace = error.getStackTrace();
for(int i=0; i<trace.length; i++){
String className = trace[i].getClassName();
if (className.startsWith("uws."))
className = "<a
href=\"/uwstuto/javadoc/"+className.replaceAll("\\.", "/")+".html\"

class=\"javadoc\">"+className+"";

out.println("\t\t\t<tr"+((i%2 !'= 0)?" class=\"alt\"":"")

+"><td>"+className+"</td><td>"+trace[i] .getMethodName ()
+"</td><td>"+trace[i].getLineNumber()+"</td></tr>");

}
out.println("\t\t</table>");
out.println("\t</body>\n</html>");

out.close();

Trick !

You can test this customization by typing a bad jobs list name (for a fatal error) or a bad attribute name
(for a transient error ; ex: params rather than parameters) in the URL.

UWS Library v3.0 - E. How to customize a UWS ? Page 52 on 55

9. The interface HttpSessionBindingEvent

« This part of the documentation is useful only if you put any instance of AbstractUWS subclass in a
session (so it is stored in the navigator of the client).

+ A better way to keep your UWS in state is to use saveUWs and restoreUWS of UWSToolBox. See the
part E.1. Save & Restore a UWS.

When a session is finishing the contained UWS is not accessible anymore through a servlet. It can cause
some problems. Indeed if all jobs of the previous session are still running, they continue to hold resources
and so the performances of your computer are decreasing.

In order to clear all UWS resources (stop threads and timers, delete files, ...) when a session is finishing,
the class AbstractUWS implements the interface HttpSessionBindinglistener. This interface contains two
methods:

- valueBound(HttpSessionBindingEvent): called when the UWS is added as attribute of a session.
+ valueUnbound(HttpSessionBindingEvent): called when the UWS is removed from a session.

These two methods are already implemented but can be overrided. By default
valueBound(HttpSessionBindingEvent) does nothing except printing a message.
valueUnbound(HttpSessionBindingEvent) calls the method removeAllJobLists() which calls the method
clearResources() for all Jobs of all managed JobLists.

UWS Library v3.0 - E. How to customize a UWS ? Page 53 on 55

file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/javadoc/uws/service/AbstractUWS.html#valueUnbound(javax.servlet.http.HttpSessionBindingEvent)
file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/javadoc/uws/service/AbstractUWS.html#valueBound(javax.servlet.http.HttpSessionBindingEvent)
file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/javadoc/uws/service/AbstractUWS.html#valueUnbound(javax.servlet.http.HttpSessionBindingEvent)
file:///home/mantelet/eclipse_workspace/uwstuto3/WebContent/javadoc/uws/service/AbstractUWS.html#valueBound(javax.servlet.http.HttpSessionBindingEvent)
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.5/api/javax/servlet/http/HttpSessionBindingListener.html

F. UWS Tools-Box

The class UWSToolBox gathers several usefull functions. All of them are static, so you don't need to create
an instance of this class. Some of them have already been used in the previous sections of this tutorial:

« printURL(UWSUrl) and printURL(UWSUrl, OutputStream):
They display the content of the given UWSUrl in the given output stream.

» publishErrorSummary(AbstractJob, String, ErrorType) and
publishErrorSummary(AbstractJob, Exception, ErrorType, String, String, String)
They set the phase to ERROR and set an error summary of the given job in function of the given
parameters.

UWSToolBox

- UWSToolBox()

F+ getServerResource(String, HttpServletRequest): URL

F+ getParamsMap(HttpServietRequest): Map=String, String=

F+ getParamsMap(HttpServletRequest, String): Map=String, String=
F+ getQueryPart(Map<String,String=}: String

F+ getParameters(String): Map=5tring, String=

F+ saveUWS(AbstractUWS, File, boolean): boolean

F+ restoreUWSs(File, boolean): AbstractUWS

F+ clearDirectory(String)

F+ clearDirectory(File)

E+ publishErrorsummary(Abstractlob j, String msg, ErrorType errTypel: boolean

F+ publishErrorSummary(Abstractlob |, Exception ex, ErrorType errType, String errorFileUri, String errorsDirectory, String errorFileName): boolean
F+ writeErrorFile(Exception ex, String errorsDirectory, String errorFileMame): boolean

F+ writeErrorFile(Exception ex, String errorsDirectory, String errorFileName, boolean overwrite): boolean

F+ printURL(UWSUTrI)

F+ printURL(UWSUrl, QutputStream)

Error tools

The both error publication functions use actually writeErrorFile(Exception error, String dirPath, String
fileName, boolean overwrite) which only writes the stack trace of the given exception in the specified file.
The second writeErrorFile function calls this one but with frue as last parameter which means that if the
specified file exists, it will be overwritten.

URL tools

In addition to the printURL methods, this class provides the following functions to manipulate more easily
URLs:

« getServerResource(String, HttpServletRequest):
It returns the full URL to access to the server resource (a directory, a file, an image, a html page, ...)
which corresponds to the given URI.

- getParamsMap(HttpServletRequest):
It extracts the parameters map from the given HTTP request. The keys (parameter name) and values
(parameter value) of the returned map are of type String. (note: HttpServietRequ
est.getParameterMap() returns a map whose the values are an array of String. Hence this tool
function !)

. getParamsMap(HttpServletRequest, String):

UWS Library v3.0 - F. UWS Tools-Box Page 54 on 55

It does the same thing than getParamsMap(HttpServietRequest) and add the given owner ID, if it is
not already into the parameters map.

« getQueryPart(Map):
It generates the query part of an URL and returns it. In a URL, this part starts with ?. The
parameters follows the syntax name=value and are separated by a &.

« getParameters(String):

It does the contrary of getQueryPart(Map). The given query part is parsed so that parameters can be
returned in a map (keys are parameter names whereas values are parameter values).

Saving & Restoring a UWS

At each stop (or even during a simple restart) of Tomcat, the value of all class attributes are lost.
Consequently all pending/running/stopped jobs are destroyed. To avoid this effect you can save the UWS in
the destroy() function, by using saveUWS(AbstractUWs, File, boolean). Below is an example:

public void destroy() {
// Save the current state of this UWS:
UWSToolBox.saveUWS(uws, restoreFile, true);
super.destroy();

To restore a UWS you just have to call restoreUWS(File, boolean) in the init(ServletConfig) function:

public void init(ServletConfig config) throws ServletException {
// Restore the last saved UWS:
restoreFile = new File(config.getServletContext().getRealPath("/"), "uwsRestore");
uws = (BasicUWS<JobChrono>) UWSToolBox.restoreUWS(restoreFile, true);
super.init(config);

Notes:

« All the UWS objects of the library are serializable (they implement the interface
java.io.Serializable). The functions UWSToolBox.saveUWS and UWSToolBox.restoreUWS use this
particularity to save the UWS in the specified file and then to restore it.

« Another solution is to use the Tomcat Persistent Manager which uses also the java Serialization

mechanism. However according to the Tomcat website this functionnality "should be considered
experimental" !

UWS Library v3.0 - F. UWS Tools-Box Page 55 on 55

http://download.oracle.com/javaee/6/api/javax/servlet/GenericServlet.html#init(javax.servlet.ServletConfig)
http://tomcat.apache.org/tomcat-6.0-doc/config/manager.html
http://download.oracle.com/javase/6/docs/api/java/io/Serializable.html

	A. Brief reminder of UWS
	1. An asynchronous service
	2. A job-oriented service
	3. Resources and URIs

	B. Using a UWS
	1. List jobs
	2. Create a job
	3. Get a job summary
	4. Change some job parameters
	5. Start a job
	6. Abort a job
	7. Destroy a job
	8. Important notes

	C. Getting started
	Introduction
	1. Choosing the "type of UWS"
	AbstractUWS
	 BasicUWS and ExtendedUWS
	QueuedBasicUWS and QueuedExtendedUWS
	Which one choosing ?

	2. Writing the servlet
	The HttpServlet class
	UWSTimers
	Initializing the UWS
	Forwarding requests to the UWS

	Customize your UWS

	3. Defining the job
	AbstractJob
	The constructor
	Managing job parameters
	Writing the task
	Clearing resources

	Conclusion

	D. How to customize a Job ?
	1. Job ID
	2. Date format
	3.a. Execution WITHOUT queue
	How does it work ?
	Stopping job
	Changing the execution phase
	How to customize ?

	3.b. Execution WITH queue
	How does it work ?
	How to customize ?

	4. Error summary
	How does it work ?
	How to customize ?

	5. Destruction
	How does it work ?
	Automatic destruction
	How to customize ?

	6. Keeping an eye on jobs

	E. How to customize a UWS ?
	1. Name, description and home page
	UWS resource
	UWS Name & Description
	Home Page
	Add actions

	2. UWS administration
	Jobs lists management
	Controllers
	Information about a UWS

	3. User identification
	How does it work ?
	How to customize ?

	4. Request interpretation
	How does it work ?
	How to customize ?

	5. UWS URL Interpretation
	URL splitting
	URL interpretation
	URL generation
	a. With modification
	b. Without modification

	6. Actions
	The class UWSAction
	How does it work ?
	How to customize ?
	1. Extend UWSAction
	2. Update your UWS

	How to customize ?

	7. Serializations
	The classes UWSSerializer and SerializableUWSObject
	How does it work ?
	How to customize ?

	8. Redirection and errors
	How does it work ?
	How to customize ?

	9. The interface HttpSessionBindingEvent

	F. UWS Tools-Box
	Error tools
	URL tools
	Saving & Restoring a UWS

